Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 229(4): 1077-1087, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-37602681

ABSTRACT

Hepatitis B Virus (HBV) is a major driver of infectious disease mortality. Curative therapies are needed and ideally should induce CD8 T cell-mediated clearance of infected hepatocytes plus anti-hepatitis B surface antigen (HBsAg) antibodies (anti-HBs) to neutralize residual virus. We developed a novel therapeutic vaccine using non-replicating arenavirus vectors. Antigens were screened for genotype conservation and magnitude and genotype reactivity of T cell response, then cloned into Pichinde virus (PICV) vectors (recombinant PICV, GS-2829) and lymphocytic choriomeningitis virus (LCMV) vectors (replication-incompetent, GS-6779). Alternating immunizations with GS-2829 and GS-6779 induced high-magnitude HBV T cell responses, and high anti-HBs titers. Dose schedule optimization in macaques achieved strong polyfunctional CD8 T cell responses against core, HBsAg, and polymerase and high titer anti-HBs. In AAV-HBV mice, GS-2829 and GS-6779 were efficacious in animals with low pre-treatment serum HBsAg. Based on these results, GS-2829 and GS-6779 could become a central component of cure regimens.


Subject(s)
Arenavirus , Hepatitis B , Mice , Animals , Hepatitis B Surface Antigens , Hepatitis B virus/genetics , Hepatitis B Vaccines , Hepatitis B Antibodies , Immunization , CD8-Positive T-Lymphocytes , Genotype , Antigens, Surface
2.
Sci Transl Med ; 14(633): eabl8282, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-34968150

ABSTRACT

Remdesivir (RDV) is a nucleotide analog prodrug with demonstrated clinical benefit in patients with coronavirus disease 2019 (COVID-19). In October 2020, the US FDA approved intravenous (IV) RDV as the first treatment for hospitalized COVID-19 patients. Furthermore, RDV has been approved or authorized for emergency use in more than 50 countries. To make RDV more convenient for non-hospitalized patients earlier in disease, alternative routes of administration are being evaluated. Here, we investigated the pharmacokinetics and efficacy of RDV administered by head dome inhalation in African green monkeys (AGM). Relative to an IV administration of RDV at 10 mg/kg, an approximately 20-fold lower dose administered by inhalation produced comparable concentrations of the pharmacologically active triphosphate in lower respiratory tract tissues. Distribution of the active triphosphate into the upper respiratory tract was also observed following inhaled RDV exposure. Inhalation RDV dosing resulted in lower systemic exposures to RDV and its metabolites as compared with IV RDV dosing. An efficacy study with repeated dosing of inhaled RDV in an AGM model of SARS-CoV-2 infection demonstrated reductions in viral replication in bronchoalveolar lavage fluid and respiratory tract tissues compared with placebo. Efficacy was observed with inhaled RDV administered once daily at a pulmonary deposited dose of 0.35 mg/kg beginning approximately 8 hours post-infection. Moreover, the efficacy of inhaled RDV was similar to that of IV RDV administered once at 10 mg/kg followed by 5 mg/kg daily in the same study. Together, these findings support further clinical development of inhalation RDV.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacokinetics , Chlorocebus aethiops , Humans , Primates , SARS-CoV-2 , Viral Load
3.
ACS Med Chem Lett ; 11(6): 1236-1243, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32551006

ABSTRACT

A series of PI3Kß selective inhibitors derived from a novel 4-(1H-benzo[d]imidazol-1-yl)quinoline chemotype has been rationally designed. Crucial to achieving the desired selectivity over the other class I PI3K isoforms, including the challenging δ-isoform, was the identification of a subset of substituted pyridine hinge binders. This work led to the discovery of (P)-14, a highly selective and orally bioavailable PI3Kß inhibitor displaying an excellent pharmacokinetic profile in addition to great cellular potency in various PTEN-deficient tumor cell lines. Results from a dog toxicology study revealing structure-related, off-target ocular toxicity are also briefly discussed.

5.
J Allergy Clin Immunol ; 114(4): 820-5, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15480321

ABSTRACT

BACKGROUND: Eosinophils play a major role in allergic airway inflammation because of their ability to release toxic mediators. In addition, they are able to migrate toward draining thoracic lymph nodes (TLNs) after intratracheal administration, where they can function as antigen-presenting cells. OBJECTIVE: In this study, we evaluated in vivo eosinophil migration toward the TLN after allergen sensitization and analyzed expression of molecules involved in antigen presentation. METHODS: Mice were sensitized by intraperitoneal injection of ovalbumin on days 1 and 10 and challenged once intranasally with ovalbumin on day 20. The kinetics of eosinophilia was evaluated in blood, lung tissue homogenate, bronchoalveolar lavage fluid, and TLN. Cell surface staining was analyzed by flow cytometry. RESULTS: The kinetics of eosinophil recruitment was similar in TLN, lung tissue, and blood, beginning at 12 hours and peaking at 48 hours after allergen challenge. Approximately 70% of TLN eosinophils expressed MHC class II molecules, compared with less than 25% in blood and lungs. Moreover, TLN eosinophils expressed higher levels of MHC class II and CD86 compared with blood and lung eosinophils. Most eosinophils expressed CD80 and CD54, whereas only a few eosinophils expressed CD40. Eosinophils in lungs and TLN appeared to be activated with lower CD62-ligand expression compared with blood eosinophils. CONCLUSION: The presence of eosinophils with a different phenotype in the TLN at early time points after allergen challenge of sensitized mice supports their capacity to serve as antigen-presenting cells, sustaining allergic/inflammatory responses in the airways.


Subject(s)
Allergens/immunology , Chemotaxis, Leukocyte/immunology , Eosinophils/immunology , Lymph Nodes/immunology , Administration, Inhalation , Allergens/administration & dosage , Animals , Antigen Presentation/immunology , Antigens, CD/immunology , Bronchial Provocation Tests , Female , Genes, MHC Class II/immunology , Mice , Thorax
6.
Hepatology ; 40(5): 1106-15, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15389776

ABSTRACT

Liver fibrosis is characterized by increased synthesis, and decreased degradation, of extracellular matrix (ECM) within the injured tissue. Decreased ECM degradation results, in part, from increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), which blocks matrix metalloproteinase (MMP) activity. TIMP-1 is also involved in promoting survival of activated hepatic stellate cells (HSCs), a major source of ECM. This study examined the effects of blocking TIMP-1 activity in a clinically relevant model of established liver fibrosis. Rats were treated with carbon tetrachloride (CCl(4)), or olive oil control, for 6 weeks; 24 days into the treatment, the rats were administered a neutralizing anti-TIMP-1 antibody derived from a fully human combinatorial antibody library (HuCAL), PBS, or an isotype control antibody. Livers from CCl(4)-treated rats exhibited substantial damage, including bridging fibrosis, inflammation, and extensive expression of smooth muscle alpha-actin (alpha-SMA). Compared to controls, rats administered anti-TIMP-1 showed a reduction in collagen accumulation by histological examination and hydroxyproline content. Administration of anti-TIMP-1 resulted in a marked decrease in alpha-SMA staining. Zymography analysis showed antibody treatment decreased the activity of MMP-2. In conclusion, administration of a TIMP-1 antibody attenuated CCl(4)-induced liver fibrosis and decreased HSC activation and MMP-2 activity.


Subject(s)
Liver Cirrhosis/pathology , Liver Cirrhosis/prevention & control , Tissue Inhibitor of Metalloproteinase-1/physiology , Actins/antagonists & inhibitors , Actins/metabolism , Animals , Antibodies/pharmacology , Carbon Tetrachloride , Collagen/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Male , Matrix Metalloproteinase Inhibitors , Muscle, Smooth/metabolism , Rats , Rats, Wistar , Severity of Illness Index , Tissue Inhibitor of Metalloproteinase-1/immunology
7.
Mol Ther ; 7(2): 155-62, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12597903

ABSTRACT

The clinical manifestations of allergic asthma are believed to result from a dysregulated, T helper 2 lymphocyte (Th2)-biased response to antigen. Although asthma symptoms can be controlled acutely, there is a need for a therapy that will address the underlying immune dysfunction and provide continuous control of chronic airway inflammation. The Th2-type cytokines, IL-13 and IL-4, have been demonstrated to play a crucial role in asthma pathogenesis and their selective neutralization results in the alleviation of asthmatic symptoms in mouse models. The activity of both of these cytokines can be inhibited by a mutant IL-4 protein, IL-4 receptor antagonist (IL-4RA), and thus, continual IL-4RA therapy might be beneficial in treatment of chronic asthma. To explore the potential utility of long-term gene therapy for the treatment of asthma we used a recombinant adeno-associated virus (AAV) vector to deliver and provide sustained expression of IL-4RA in vivo. We show that AAV-mediated delivery of IL-4RA to the airways of mice reduces airway hyperresponsiveness (AHR) and airway eosinophilia triggered by either IL-13 or IL-4. Furthermore, AAV-delivered IL-4RA, expressed either systemically or in the airways of mice following allergen sensitization, significantly inhibited development of airway eosinophilia and mucus production and reduced the levels of asthma-associated Th2 cytokines and AHR in the experimental mouse model of allergic asthma. Thus, gene therapy can be a potential therapeutic option to treat and control chronic airway inflammation and asthmatic symptoms.


Subject(s)
Asthma/therapy , Genetic Therapy/methods , Interleukin-13/genetics , Interleukin-4/genetics , Animals , Dependovirus/genetics , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Eosinophils/metabolism , Female , Gene Transfer Techniques , Genetic Vectors , Immunohistochemistry , Methacholine Chloride/pharmacology , Mice , Mice, Inbred BALB C , Plasmids/metabolism , Receptors, Interleukin-4/genetics , Recombinant Proteins/metabolism , Th2 Cells/immunology , Time Factors
8.
J Allergy Clin Immunol ; 109(5): 810-6, 2002 May.
Article in English | MEDLINE | ID: mdl-11994705

ABSTRACT

BACKGROUND: Activated T cells, through the release of specific cytokines (ie, IL-4, IL-5, and IL-13), regulate effector cell recruitment and function. In this way T cells orchestrate the inflammatory response, which leads to airway hyperresponsiveness (AHR), a cardinal feature of allergic asthma. OBJECTIVE: In the present study the direct role of T cells and, in particular, the importance of signal transducer and activator of transcription 6 (STAT6) in T cells was investigated in the development of AHR. METHODS: In a murine model of allergen-driven AHR, the effects of adoptive transfer of STAT6-containing (STAT6+/+) and STAT6-deficient (STAT6-/-) T cells from sensitized mice into allergen-challenged mice were tested. RESULTS: Although greater in STAT6+/+ mice, both allergen-challenged STAT6+/+ and STAT6-/- mice had AHR after transfer of T cells from sensitized STAT6+/+ mice. In contrast, AHR did not develop in allergen-challenged STAT6-/- mice after transfer of T cells from sensitized STAT6-/- mice. Reconstitution of AHR after T-cell transfer was not associated with airway eosinophilia. CONCLUSIONS: The data indicate that the STAT6 status of the donor mice is critical to the development of AHR. Although not critical for the development of AHR, the STAT6 status of the recipient mice might play a contributory-regulatory role in the AHR response. The results identify a STAT6-dependent T-cell pathway capable of modulating airway responsiveness, even in the absence of a significant airway eosinophilia.


Subject(s)
Adoptive Transfer , Bronchial Hyperreactivity/immunology , T-Lymphocytes/transplantation , Trans-Activators/physiology , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Cytokines/analysis , Eosinophilia/pathology , Female , Immunization , Male , Mice , Mice, Knockout/genetics , Ovalbumin/immunology , STAT6 Transcription Factor , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...