Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37299753

ABSTRACT

In orthodontics, understanding the pressure of oral soft tissues on teeth is important to elucidate the cause and establish treatment methods. We developed a small wireless mouthguard (MG)-type device that continuously and unrestrainedly measures pressure, which had previously been unachieved, and evaluated its feasibility in human subjects. First, the optimal device components were considered. Next, the devices were compared with wired-type systems. Subsequently, the devices were fabricated for human testing to measure tongue pressure during swallowing. The highest sensitivity (51-510 g/cm2) with minimum error (CV < 5%) was obtained using an MG device with polyethylene terephthalate glycol and ethylene vinyl acetate for the lower and upper layers, respectively, and with a 4 mm PMMA plate. A high correlation coefficient (0.969) was observed between the wired and wireless devices. In the measurements of tongue pressure on teeth during swallowing, 132.14 ± 21.37 g/cm2 for normal and 201.17 ± 38.12 g/cm2 for simulated tongue thrust were found to be significantly different using a t-test (n = 50, p = 6.2 × 10-19), which is consistent with the results of a previous study. This device can contribute to assessing tongue thrusting habits. In the future, this device is expected to measure changes in the pressure exerted on teeth during daily life.


Subject(s)
Mouth Protectors , Tongue , Humans , Pressure , Deglutition , Habits
2.
Anal Chem ; 92(18): 12201-12207, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32927955

ABSTRACT

In this study, a cellulose acetate (CA) membrane is formed as an interference rejection membrane on a glucose sensor to measure glucose in saliva. Glucose in saliva is successfully measured in vivo without any pretreatment of human saliva. A mouthguard (MG) glucose sensor is developed to monitor salivary glucose, which is reported to be correlated with the blood glucose level. Salivary components of ascorbic acid (AA) and uric acid (UA) hinder the accurate measurement of the glucose concentration of human saliva. CA-coated electrodes are prepared to investigate the interference rejection membrane. To measure hydrogen peroxide, which is a reaction product of glucose oxidase, effects of AA and UA are examined. Characteristics of the fabricated biosensor are examined on the basis of artificial saliva. The as-developed MG sensor can quantify the glucose concentration in the range of 1.75-10 000 µmol/L, which includes a salivary sugar concentration of 20-200 µmol/L. For the measurement of saliva samples collected from healthy subjects, the output corresponding to the concentration is confirmed; this suggests the possibility of glucose measurement. This MG glucose sensor can provide a useful method for the unrestricted and noninvasive monitoring of saliva glucose for the management of diabetes patients.


Subject(s)
Biosensing Techniques , Cellulose/analogs & derivatives , Glucose/analysis , Saliva/chemistry , Wearable Electronic Devices , Biomarkers/analysis , Biomarkers/metabolism , Cellulose/chemistry , Electrodes , Glucose/metabolism , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...