Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
Phys Rev E ; 109(4-2): 045308, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38755913

ABSTRACT

A technique for reducing the number of integrals in a Monte Carlo calculation is introduced. For integrations relying on classical or mean-field trajectories with local weighting functions, it is possible to integrate analytically at least half of the integration variables prior to setting up the particular Monte Carlo calculation of interest, in some cases more. Proper accounting of invariant phase space structures shows that the system's dynamics is reducible into composite stable and unstable degrees of freedom. Stable degrees of freedom behave locally in the reduced dimensional phase space exactly as an analogous integrable system would. Classification of the unstable degrees of freedom is dependent upon the degree of chaos present in the dynamics. The techniques for deriving the requisite canonical coordinate transformations are developed and shown to block diagonalize the stability matrix into irreducible parts. In doing so, it is demonstrated how to reduce the amount of sampling directions necessary in a Monte Carlo simulation. The technique is illustrated by calculating return probabilities and expectation values for different dynamical regimes of a two-degrees-of-freedom coupled quartic oscillator within a classical Wigner method framework.

2.
Phys Rev E ; 108(4-1): 044202, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978592

ABSTRACT

One major objective of controlling classical chaotic dynamical systems is exploiting the system's extreme sensitivity to initial conditions in order to arrive at a predetermined target state. In a recent Letter [Phys. Rev. Lett. 130, 020201 (2023)0031-900710.1103/PhysRevLett.130.020201], a generalization of this targeting method to quantum systems was demonstrated using successive unitary transformations that counter the natural spreading of a quantum state. In this paper further details are given and an important quite general extension is established. In particular, an alternate approach to constructing the coherent control dynamics is given, which introduces a time-dependent, locally stable control Hamiltonian that continues to use the chaotic heteroclinic orbits previously introduced, but without the need of countering quantum state spreading. Implementing that extension for the quantum kicked rotor generates a much simpler approximate control technique than discussed in the Letter, which is a little less accurate, but far more easily realizable in experiments. The simpler method's error can still be made to vanish as ℏ→0.

3.
Phys Rev E ; 107(2-1): 024124, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932552

ABSTRACT

A bipartite system whose subsystems are fully quantum chaotic and coupled by a perturbative interaction with a tunable strength is a paradigmatic model for investigating how isolated quantum systems relax toward an equilibrium. It is found that quantum coherence of the initial product states in the energy eigenbasis of the subsystems-quantified by the off-diagonal elements of the subsystem density matrices-can be viewed as a resource for equilibration and thermalization as manifested by the entanglement generated. Results are given for four distinct perturbation strength regimes, the ultraweak, weak, intermediate, and strong regimes. For each, three types of tensor product states are considered for the initial state: uniform superpositions, random superpositions, and individual subsystem eigenstates. A universal timescale is identified involving the interaction strength parameter. In particular, maximally coherent initial product states (a form of uniform superpositions) thermalize under time evolution for any perturbation strength in spite of the fact that in the ultraweak perturbative regime the underlying eigenstates of the system have a tensor product structure and are not at all thermal-like; though the time taken to thermalize tends to infinity as the interaction vanishes. Moreover, it is shown that in the ultraweak regime the initial entanglement growth of the system whose initial states are maximally coherent is quadratic-in-time, in contrast to the widely observed linear behavior.

4.
Phys Rev Lett ; 130(2): 020201, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36706382

ABSTRACT

One of the principal goals of controlling classical chaotic dynamical systems is known as targeting, which is the very weakly perturbative process of using the system's extreme sensitivity to initial conditions in order to arrive at a predetermined target state. It is shown that a generalization to chaotic quantum systems is possible in the semiclassical regime, but requires tailored perturbations whose effects must undo the dynamical spreading of the evolving quantum state. The procedure described here is applied to initially minimum uncertainty wave packets in the quantum kicked rotor, a preeminent quantum chaotic paradigm, to illustrate the method, and investigate its accuracy. The method's error can be made to vanish as ℏ→0.

5.
Phys Rev E ; 105(5-1): 054206, 2022 May.
Article in English | MEDLINE | ID: mdl-35706184

ABSTRACT

Semiclassical methods are extremely important in the subjects of wave-packet and coherent-state dynamics. Unfortunately, these essentially saddle-point approximations are considered nearly impossible to carry out in detail for systems with multiple degrees of freedom due to the difficulties of solving the resulting two-point boundary-value problems. However, recent developments have extended the applicability to a broader range of systems and circumstances. The most important advances are first to generate a set of real reference trajectories using appropriately reduced dimensional spaces of initial conditions, and second to feed that set into a Newton-Raphson search scheme to locate the exposed complex saddle trajectories. The arguments for this approach were based mostly on intuition and numerical verification. In this paper, the methods are put on a firmer theoretical foundation and then extended to incorporate saddles hidden from Newton-Raphson searches initiated with real trajectories. This hidden class of saddles is relevant to tunneling-type processes, but a hidden saddle can sometimes contribute just as much as or more than an exposed one. The distinctions between hidden and exposed saddles clarifies the interpretation of what constitutes tunneling for wave packets and coherent states in the time domain.

6.
Phys Rev E ; 105(5-1): 054207, 2022 May.
Article in English | MEDLINE | ID: mdl-35706190

ABSTRACT

Saddle-point approximations, extremely important in a wide variety of physical contexts, require the analytical continuation of canonically conjugate quantities to complex variables in quantum mechanics. An important component of this approximation's implementation is arriving at the phase correction attributable to caustics, which involves determinantal prefactors. The common prescription of using the inverse of half a certain determinant's total accumulated phase sometimes leads to sign errors. The root of this problem is traced to the zeros of the determinants at complex times crossing the real time axis. Deformed complex time contours around the zeros can repair the sign errors that sometimes occur, but a much more practical way is given that links saddles back to associated real trajectories and avoids the necessity of locating the complex time zeros of the determinants.

7.
Phys Rev E ; 101(3-1): 032212, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32290014

ABSTRACT

The entanglement production in bipartite quantum systems is studied for initially unentangled product eigenstates of the subsystems, which are assumed to be quantum chaotic. Based on a perturbative computation of the Schmidt eigenvalues of the reduced density matrix, explicit expressions for the time-dependence of entanglement entropies, including the von Neumann entropy, are given. An appropriate rescaling of time and the entropies by their saturation values leads a universal curve, independent of the interaction. The extension to the nonperturbative regime is performed using a recursively embedded perturbation theory to produce the full transition and the saturation values. The analytical results are found to be in good agreement with numerical results for random matrix computations and a dynamical system given by a pair of coupled kicked rotors.

8.
Phys Rev Lett ; 123(21): 215302, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31809161

ABSTRACT

Although highly successful, the truncated Wigner approximation (TWA) leaves out many-body quantum interference between mean-field Gross-Pitaevskii solutions as well as other quantum effects, and is therefore essentially classical. Turned around, if a system's quantum properties deviate from TWA, they must be exhibiting some quantum phenomenon, such as localization, diffraction, or tunneling. Here, we examine a particular interference effect arising from discrete symmetries, which can significantly enhance quantum observables with respect to the TWA prediction, and derive an augmented TWA in order to incorporate them. Using the Bose-Hubbard model for illustration, we further show strong evidence for the presence of dynamical localization due to remaining differences between the TWA predictions and quantum results.

9.
Phys Rev E ; 100(5-1): 052202, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31870019

ABSTRACT

The magnitudes of the terms in periodic orbit semiclassical trace formulas are determined by the orbits' stability exponents. In this paper, we demonstrate a simple asymptotic relationship between those stability exponents and the phase-space positions of particular homoclinic points.

10.
Phys Rev E ; 99(3-1): 032212, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30999433

ABSTRACT

Homoclinic and heteroclinic orbits provide a skeleton of the full dynamics of a chaotic dynamical system and are the foundation of semiclassical sums for quantum wave packets, coherent states, and transport quantities. Here, the homoclinic orbits are organized according to the complexity of their phase-space excursions, and exact relations are derived expressing the relative classical actions of complicated orbits as linear combinations of those with simpler excursions plus phase-space cell areas bounded by stable and unstable manifolds. The total number of homoclinic orbits increases exponentially with excursion complexity, and the corresponding cell areas decrease exponentially in size as well. With the specification of a desired precision, the exponentially proliferating set of homoclinic orbit actions is expressible by a slower-than-exponentially increasing set of cell areas, which may present a means for developing greatly simplified semiclassical formulas.

11.
Phys Rev E ; 98(2-1): 023301, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30253580

ABSTRACT

A practical search technique for finding the complex saddle points used in wave packet and coherent state propagation is developed which works for a large class of Hamiltonian dynamical systems with many degrees of freedom. The method can be applied to problems in atomic, molecular, and optical physics and other domains. A Bose-Hubbard model is used to illustrate the application to a many-body system where discrete symmetries play an important and fascinating role. For multidimensional wave packet propagation, locating the necessary saddles involves the seemingly insurmountable difficulty of solving a boundary value problem in a high-dimensional complex space, followed by determining whether each particular saddle found actually contributes. In principle, this must be done for each propagation time considered. The method derived here identifies a real search space of minimal dimension, which leads to a complete set of contributing saddles up to intermediate times much longer than the Ehrenfest timescale for the system. The analysis also gives a powerful tool for rapidly identifying the various dynamical regimes of the system.

12.
Phys Rev E ; 97(2-1): 022216, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29548081

ABSTRACT

Homoclinic and unstable periodic orbits in chaotic systems play central roles in various semiclassical sum rules. The interferences between terms are governed by the action functions and Maslov indices. In this article, we identify geometric relations between homoclinic and unstable periodic orbits, and derive exact formulas expressing the periodic orbit classical actions in terms of corresponding homoclinic orbit actions plus certain phase space areas. The exact relations provide a basis for approximations of the periodic orbit actions as action differences between homoclinic orbits with well-estimated errors. This enables an explicit study of relations between periodic orbits, which results in an analytic expression for the action differences between long periodic orbits and their shadowing decomposed orbits in the cycle expansion.

13.
Phys Rev E ; 95(6-1): 062224, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28709367

ABSTRACT

Semiclassical sum rules, such as the Gutzwiller trace formula, depend on the properties of periodic, closed, or homoclinic (heteroclinic) orbits. The interferences embedded in such orbit sums are governed by classical action functions and Maslov indices. For chaotic systems, the relative actions of such orbits can be expressed in terms of phase-space areas bounded by segments of stable and unstable manifolds and Moser invariant curves. This also generates direct relations between periodic orbits and homoclinic (heteroclinic) orbit actions. Simpler, explicit approximate expressions following from the exact relations are given with error estimates. They arise from asymptotic scaling of certain bounded phase-space areas. The actions of infinite subsets of periodic orbits are determined by their periods and the locations of the limiting homoclinic points on which they accumulate.

14.
Phys Rev E ; 94(5-2): 059904, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27967126

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevE.93.012213.

15.
Phys Rev E ; 94(1-1): 010205, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27575066

ABSTRACT

The entanglement and localization in eigenstates of strongly chaotic subsystems are studied as a function of their interaction strength. Excellent measures for this purpose are the von Neumann entropy, Havrda-Charvát-Tsallis entropies, and the averaged inverse participation ratio. All the entropies are shown to follow a remarkably simple exponential form, which describes a universal and rapid transition to nearly maximal entanglement for increasing interaction strength. An unexpectedly exact relationship between the subsystem averaged inverse participation ratio and purity is derived that prescribes the transition in the localization as well.

16.
Philos Trans A Math Phys Eng Sci ; 374(2069)2016 Jun 13.
Article in English | MEDLINE | ID: mdl-27140974

ABSTRACT

Using semiclassical methods, it is possible to construct very accurate approximations in the short-wavelength limit of quantum dynamics that rely exclusively on classical dynamical input. For systems whose classical realization is strongly chaotic, there is an exceedingly short logarithmic Ehrenfest time scale, beyond which the quantum and classical dynamics of a system necessarily diverge, and yet the semiclassical construction remains valid far beyond that time. This fact leads to a paradox if one ponders the reversibility and predictability properties of quantum and classical mechanics. They behave very differently relative to each other, with classical dynamics being essentially irreversible/unpredictable, whereas quantum dynamics is reversible/stable. This begs the question: 'How can an accurate approximation to a reversible/stable dynamics be constructed from an irreversible/unpredictable one?' The resolution of this incongruity depends on a couple of key ingredients: a well-known, inherent, one-way structural stability of chaotic systems; and an overlap integral not being amenable to the saddle point method.

17.
Phys Rev Lett ; 116(5): 054101, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26894713

ABSTRACT

The statistical properties of interacting strongly chaotic systems are investigated for varying interaction strength. In order to model tunable entangling interactions between such systems, we introduce a new class of random matrix transition ensembles. The nearest-neighbor-spacing distribution shows a very sensitive transition from Poisson statistics to those of random matrix theory as the interaction increases. The transition is universal and depends on a single scaling parameter only. We derive the analytic relationship between the model parameters and those of a bipartite system, with explicit results for coupled kicked rotors, a dynamical systems paradigm for interacting chaotic systems. With this relationship the spectral fluctuations for both are in perfect agreement. An accurate approximation of the nearest-neighbor-spacing distribution as a function of the transition parameter is derived using perturbation theory.

18.
Phys Rev E ; 93(1): 012213, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26871079

ABSTRACT

The ultimate semiclassical wave packet propagation technique is a complex, time-dependent Wentzel-Kramers-Brillouin method known as generalized Gaussian wave packet dynamics (GGWPD). It requires overcoming many technical difficulties in order to be carried out fully in practice. In its place roughly twenty years ago, linearized wave packet dynamics was generalized to methods that include sets of off-center, real trajectories for both classically integrable and chaotic dynamical systems that completely capture the dynamical transport. The connections between those methods and GGWPD are developed in a way that enables a far more practical implementation of GGWPD. The generally complex saddle-point trajectories at its foundation are found using a multidimensional Newton-Raphson root search method that begins with the set of off-center, real trajectories. This is possible because there is a one-to-one correspondence. The neighboring trajectories associated with each off-center, real trajectory form a path that crosses a unique saddle; there are exceptions that are straightforward to identify. The method is applied to the kicked rotor to demonstrate the accuracy improvement as a function of ℏ that comes with using the saddle-point trajectories.

19.
J Acoust Soc Am ; 134(4): 3174-84, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24116514

ABSTRACT

In a recent letter [Hegewisch and Tomsovic, Europhys. Lett. 97, 34002 (2012)], random matrix theory is introduced for long-range acoustic propagation in the ocean. The theory is expressed in terms of unitary propagation matrices that represent the scattering between acoustic modes due to sound speed fluctuations induced by the ocean's internal waves. The scattering exhibits a power-law decay as a function of the differences in mode numbers thereby generating a power-law, banded, random unitary matrix ensemble. This work gives a more complete account of that approach and extends the methods to the construction of an ensemble of acoustic timefronts. The result is a very efficient method for studying the statistical properties of timefronts at various propagation ranges that agrees well with propagation based on the parabolic equation. It helps identify which information about the ocean environment can be deduced from the timefronts and how to connect features of the data to that environmental information. It also makes direct connections to methods used in other disordered waveguide contexts where the use of random matrix theory has a multi-decade history.


Subject(s)
Acoustics , Models, Theoretical , Oceanography/methods , Seawater , Sound , Fourier Analysis , Motion , Oceans and Seas , Reproducibility of Results , Scattering, Radiation , Sound Spectrography , Time Factors
20.
Phys Rev Lett ; 109(23): 234101, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23368209

ABSTRACT

Generic 2D Hamiltonian systems possess partial barriers in their chaotic phase space that restrict classical transport. Quantum mechanically, the transport is suppressed if Planck's constant h is large compared to the classical flux, h>>Φ, such that wave packets and states are localized. In contrast, classical transport is mimicked for h<<Φ. Designing a quantum map with an isolated partial barrier of controllable flux Φ is the key to investigating the transition from this form of quantum localization to mimicking classical transport. It is observed that quantum transport follows a universal transition curve as a function of the expected scaling parameter Φ/h. We find this curve to be symmetric to Φ/h=1, having a width of 2 orders of magnitude in Φ/h, and exhibiting no quantized steps. We establish the relevance of local coupling, improving on previous random matrix models relying on global coupling. It turns out that a phenomenological 2×2 model gives an accurate analytical description of the transition curve.

SELECTION OF CITATIONS
SEARCH DETAIL