Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35956776

ABSTRACT

Carotenoid succinates were synthesized from hydroxy carotenoids and were coupled to a commercially available derivative of melatonin via amide bond for producing more powerful anti-oxidants and yet new hybrid lipophilic bifunctional molecules with additional therapeutic effects. The coupling reactions produced conjugates in acceptable to good yields. Succinylation increased the water solubility of the carotenoids, while the conjugation with melatonin resulted in more lipophilic derivatives. The conjugates showed self-assembly in aqueous medium and yielded relatively stable colloidal solutions in phosphate-buffered saline. Antioxidant behavior was measured with ABTS and the FRAP methods for the carotenoids, the carotenoid succinates, and the conjugates with melatonin. A strong dependence on the quality of the solvent was observed. TEAC values of the new derivatives in phosphate-buffered saline were found to be comparable to or higher than those of parent carotenoids, however, synergism was observed only in FRAP assays.


Subject(s)
Antioxidants , Melatonin , Antioxidants/chemistry , Carotenoids/chemistry , Phosphates , Succinates
2.
Emerg Microbes Infect ; 11(1): 1293-1307, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35418279

ABSTRACT

N-chlorotaurine (NCT) a long-lived oxidant generated by leukocytes, can be synthesized chemically and applied topically as an anti-infective to different body sites, including the lung via inhalation. Here, we demonstrate the activity of NCT against viruses causing acute respiratory tract infections, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza viruses, and respiratory syncytial virus (RSV). Virucidal activity of NCT was tested in plaque assays, confirmed by RT-qPCR assays. Attack on virus proteins was investigated by mass spectrometry. NCT revealed broad virucidal activity against all viruses tested at 37°C and pH 7. A significant reduction in infectious particles of SARS-CoV-2 isolates from early 2020 by 1 log10 was detected after 15 min of incubation in 1% NCT. Proteinaceous material simulating body fluids enhanced this activity by transchlorination mechanisms (1 -2 log10 reduction within 1-10 min). Tested SARS-CoV-2 variants B.1.1.7 (Alpha) und B.1.351 (Beta) showed a similar susceptibility. Influenza virus infectious particles were reduced by 3 log10 (H3N2) to 5 log10 (H1N1pdm), RSV by 4 log10 within a few min. Mass spectrometry of NCT-treated SARS-CoV-2 spike protein and 3C-like protease, influenza virus haemagglutinin and neuraminidase, and RSV fusion glycoprotein disclosed multiple sites of chlorination and oxidation as the molecular mechanism of action. Application of 1.0% NCT as a prophylactic and therapeutic strategy against acute viral respiratory tract infections deserves comprehensive clinical investigation.


Subject(s)
COVID-19 Drug Treatment , Respiratory Tract Infections , Humans , Influenza A Virus, H3N2 Subtype , Respiratory Syncytial Viruses , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Taurine/analogs & derivatives
3.
Oncol Lett ; 12(2): 1591-1596, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27446476

ABSTRACT

Human hepatocellular carcinoma (HCC) is one of the most common types of cancer and has a very poor prognosis; thus, the development of effective therapies for the treatment of advanced HCC is of high clinical priority. In the present study, the anti-oncogenic effect of combined knockdown of c-Myc expression and ectopic restoration of deleted in liver cancer 1 (DLC1) expression was investigated in human liver cancer cells. Expression of c-Myc in human HCC cells was knocked down by stable transfection with a Myc-specific short hairpin (sh) RNA vector. DLC1 expression in Huh7 cells was restored by adenovirus transduction, and the effects of DLC1 expression and c-Myc knockdown on Ras homolog gene family, member A (RhoA) levels, cell proliferation, soft agar colony formation and cell invasion were measured. Downregulation of c-Myc or re-expression of DLC1 led to a marked reduction in RhoA levels, which was associated with decreases in cell proliferation, soft agar colony formation and invasiveness; this inhibitory effect was augmented with a combination of DLC1 transduction and c-Myc suppression. To determine whether liver cell-specific delivery of DLC1 was able to enhance the inhibitory effect of c-Myc knockdown on tumor growth in vivo, DLC1 vector DNA complexed with galactosylated polyethylene glycol-linear polyethyleneimine was administered by tail vein injection to mice bearing subcutaneous xenografts of Huh7 cells transfected with shMyc or control shRNA. A cooperative inhibitory effect of DLC1 expression and c-Myc knockdown on the growth of Huh7-derived tumors was observed, suggesting that targeted liver cell delivery of DLC1 and c-Myc shRNA may serve as a possible gene therapy modality for the treatment of human HCC.

4.
Mol Vis ; 15: 1673-9, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19710945

ABSTRACT

PURPOSE: Melatonin is a potent antioxidant and free radical scavenger. It has been reported that serum melatonin level is relevant to certain aging diseases. The purpose of this study was to investigate melatonin levels in age-related macular degeneration (AMD) patients by measurement of 6-sulfatoxymelatonin levels (aMT6s), the major metabolite of melatonin in urine, and compare it with a group of age- and gender-matched controls. METHODS: The first urine of the morning was collected from 43 AMD patients and 12 controls who did not have AMD. The level of aMT6s in specimens was measured by a commercial 6-sulfatoxymelatonin ELISA kit. The assay was performed by researchers, who were masked to the clinical information. To adjust for variation in the diluteness of urine, urinary creatinine level was measured and aMT6s levels were expressed as aMT6s/creatinine. RESULTS: The level of urinary aMT6s/creatinine (mean+/-SD) in AMD (6.24+/-3.45 ng aMT6s/mg creatinine) was significantly lower than that of the controls (10.40+/-4.51, p=0.0128). After adjustment for various factors (age, smoking, cancer, and coronary heart disease) that may influence the aMT6s level, the odds-ratio of urinary aMT6s comparing AMD patients to controls was 0.65 (95% confidence interval=0.48-0.88, p=0.0036), indicating that urinary aMT6s level in AMD patients was lower than in controls even after multivariate adjustment. CONCLUSIONS: Urinary aMT6s level in AMD patients was 40% lower than in age- and gender-matched controls. This difference between AMD patients and controls is present after adjustment for the factors of age, smoking, and histories of cancer and coronary heart disease. The significance of this result and the role of melatonin in the occurrence of AMD require further investigation.


Subject(s)
Aging/urine , Macular Degeneration/urine , Melatonin/analogs & derivatives , Aged , Case-Control Studies , Creatinine/urine , Demography , Female , Humans , Male , Melatonin/urine
5.
Bioorg Med Chem Lett ; 18(7): 2424-7, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18329268

ABSTRACT

Sulfonated aluminum phthalocyanines (AlPcS) are potent photosensitizers for the photodynamic therapy (PDT) of cancer. In this study we evaluate the possibility to improve the efficacy of AlPcS-PDT for prostate cancer by targeting tetrasulfonated aluminum phthalocyanines (AlPcS(4)) to the gastrin-releasing peptide receptor (GRPR) through coupling to bombesin. A mono-carbohexyl derivative of AlPcS(4) is attached to 8-Aoc-bombesin(7-14)NH(2) via an amide bridge to yield a bombesin-AlPcS(4) conjugate linked by a C-14 spacer chain. The conjugate is characterized by mass spectroscopy and shown to bind to the GRPR with a relative binding affinity (RBA) of 2.3, taking bombesin (RBA=100) as unity. The in vitro photodynamic efficacy of the conjugate against PC-3 human prostate cancer cells is improved by a factor 2.5 over the non-conjugated mono-carbohexyl derivative of AlPcS(4).


Subject(s)
Bombesin/pharmacology , Drug Delivery Systems/methods , Indoles/therapeutic use , Organometallic Compounds/therapeutic use , Photochemotherapy , Photosensitizing Agents/therapeutic use , Prostatic Neoplasms/drug therapy , Receptors, Bombesin/metabolism , Binding Sites , Bombesin/chemistry , Cell Line, Tumor , Humans , Indoles/chemical synthesis , Indoles/pharmacology , Male , Mass Spectrometry , Organometallic Compounds/chemical synthesis , Organometallic Compounds/pharmacology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/pharmacology , Prostatic Neoplasms/pathology
6.
Biochemistry ; 46(30): 8850-60, 2007 Jul 31.
Article in English | MEDLINE | ID: mdl-17595112

ABSTRACT

Amyloid plaques are hallmark neuropathological lesions in Alzheimer's disease, which consist of abnormally aggregated Abeta protein. Multiple Abeta aggregated species have been identified, and neurotoxicity appears to be correlated with the amount of nonfibrillar oligomers. Therefore, selective inhibition of Abeta oligomer formation has emerged as an attractive means of therapeutic intervention. To investigate whether small molecules can modulate aggregation to achieve selective inhibition of neurotoxic amyloid oligomers, Abeta aggregation was assayed in vitro in the presence of methylene blue, using immunoreactivity with the prefibrillar oligomer-specific antibody A11, transmission electron microscopy, and turbidity assays. Methylene blue inhibited oligomerization when used at substoichiometric concentrations relative to that of the Abeta monomer. Inhibition of Abeta oligomerization was achieved concomitant with promotion of fibrillization, suggesting that oligomer and fibril formation are distinct and competing pathways. Methylene blue-mediated promotion of fiber formation occurred via a dose-dependent decrease in the lag time and an increase in the fibrillization rate, consistent with promotion of both filament nucleation and elongation. Addition of methylene blue to preformed oligomers resulted in oligomer loss and promotion of fibrillization. The data show that Abeta oligomer formation is inhibited by promoting fibril formation, which suggests that the relative pathological significance of oligomers and fibrils may be tested in vivo using methylene blue. If Abeta oligomers represent the primary pathogenic species, then inhibition of this highly toxic species via promotion of formation of less toxic aggregates may be therapeutically useful.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/ultrastructure , Methylene Blue/chemistry , Plaque, Amyloid/chemistry , Plaque, Amyloid/ultrastructure , Dose-Response Relationship, Drug , Humans , In Vitro Techniques , Kinetics , Microscopy, Electron, Transmission , Nephelometry and Turbidimetry , Protein Binding/drug effects , Protein Denaturation/drug effects , Protein Structure, Quaternary/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/drug effects , Solubility/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...