Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-38005888

ABSTRACT

Therapeutic bacteriophages (phages) are primarily chosen based on their in vitro bacteriolytic activity. Although anti-phage antibodies are known to inhibit phage infection, the influence of other immune system components is less well known. An important anti-bacterial and anti-viral innate immune system that may interact with phages is the complement system, a cascade of proteases that recognizes and targets invading microorganisms. In this research, we aimed to study the effects of serum components such as complement on the infectivity of different phages targeting Pseudomonas aeruginosa. We used a fluorescence-based assay to monitor the killing of P. aeruginosa by phages of different morphotypes in the presence of human serum. Our results reveal that several myophages are inhibited by serum in a concentration-dependent way, while the activity of four podophages and one siphophage tested in this study is not affected by serum. By using specific nanobodies blocking different components of the complement cascade, we showed that activation of the classical complement pathway is a driver of phage inhibition. To determine the mechanism of inhibition, we produced bioorthogonally labeled fluorescent phages to study their binding by means of microscopy and flow cytometry. We show that phage adsorption is hampered in the presence of active complement. Our results indicate that interactions with complement may affect the in vivo activity of therapeutically administered phages. A better understanding of this phenomenon is essential to optimize the design and application of therapeutic phage cocktails.


Subject(s)
Bacteriophages , Pseudomonas Infections , Pseudomonas Phages , Humans , Pseudomonas aeruginosa/physiology , Pseudomonas Phages/physiology , Bacteriolysis , Pseudomonas Infections/therapy , Pseudomonas Infections/microbiology
2.
Sci Rep ; 13(1): 856, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36646746

ABSTRACT

Bacteriophages (phages) are viruses that specifically attack bacteria. Their use as therapeutics, which constitutes a promising alternative to antibiotics, heavily relies on selecting effective lytic phages against the pathogen of interest. Current selection techniques are laborious and do not allow for direct visualization of phage infection dynamics. Here, we present a method that circumvents these limitations. It can be scaled for high-throughput and permits monitoring of the phage infection in real time via a fluorescence signal readout. This is achieved through the use of a membrane-impermeant nucleic acid dye that stains the DNA of damaged or lysed bacteria and new phage progeny. We have tested the method on Pseudomonas aeruginosa and Klebsiella pneumoniae and show that an increase in fluorescence reflects phage-mediated killing. This is confirmed by other techniques including spot tests, colony plating, flow cytometry and metabolic activity measurements. Furthermore, we illustrate how our method may be used to compare the activity of different phages and to screen the susceptibility of clinical isolates to phage. Altogether, we present a fast, reliable way of selecting phages against Gram-negative bacteria, which may be valuable in optimizing the process of selecting phages for therapeutic use.


Subject(s)
Bacteriophages , Fluorescent Dyes , Bacteriophages/genetics , Bacteria , Anti-Bacterial Agents , DNA
SELECTION OF CITATIONS
SEARCH DETAIL