Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cell Biosci ; 14(1): 37, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515213

ABSTRACT

BACKGROUND: Glioma is a highly heterogeneous brain tumor categorized into World Health Organization (WHO) grades 1-4 based on its malignancy. The suppressive immune microenvironment of glioma contributes significantly to unfavourable patient outcomes. However, the cellular composition and their complex interplays within the glioma environment remain poorly understood, and reliable prognostic markers remain elusive. Therefore, in-depth exploration of the tumor microenvironment (TME) and identification of predictive markers are crucial for improving the clinical management of glioma patients. RESULTS: Our analysis of single-cell RNA-sequencing data from glioma samples unveiled the immunosuppressive role of tumor-associated macrophages (TAMs), mediated through intricate interactions with tumor cells and lymphocytes. We also discovered the heterogeneity within TAMs, among which a group of suppressive TAMs named TAM-SPP1 demonstrated a significant association with Epidermal Growth Factor Receptor (EGFR) amplification, impaired T cell response and unfavourable patient survival outcomes. Furthermore, by leveraging genomic and transcriptomic data from The Cancer Genome Atlas (TCGA) dataset, two distinct molecular subtypes with a different constitution of TAMs, EGFR status and clinical outcomes were identified. Exploiting the molecular differences between these two subtypes, we developed a four-gene-based prognostic model. This model displayed strong associations with an elevated level of suppressive TAMs and could be used to predict anti-tumor immune response and prognosis in glioma patients. CONCLUSION: Our findings illuminated the molecular and cellular mechanisms that shape the immunosuppressive microenvironment in gliomas, providing novel insights into potential therapeutic targets. Furthermore, the developed prognostic model holds promise for predicting immunotherapy response and assisting in more precise risk stratification for glioma patients.

2.
Comput Struct Biotechnol J ; 23: 954-971, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38385061

ABSTRACT

The field of cancer genomics and transcriptomics has evolved from targeted profiling to swift sequencing of individual tumor genome and transcriptome. The steady growth in genome, epigenome, and transcriptome datasets on a genome-wide scale has significantly increased our capability in capturing signatures that represent both the intrinsic and extrinsic biological features of tumors. These biological differences can help in precise molecular subtyping of cancer, predicting tumor progression, metastatic potential, and resistance to therapeutic agents. In this review, we summarized the current development of genomic, methylomic, transcriptomic, proteomic and metabolic signatures in the field of cancer research and highlighted their potentials in clinical applications to improve diagnosis, prognosis, and treatment decision in cancer patients.

3.
Mol Cancer Ther ; 23(2): 159-173, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37940144

ABSTRACT

N-terminal processing by methionine aminopeptidases (MetAP) is a crucial step in the maturation of proteins during protein biosynthesis. Small-molecule inhibitors of MetAP2 have antiangiogenic and antitumoral activity. Herein, we characterize the structurally novel MetAP2 inhibitor M8891. M8891 is a potent, selective, reversible small-molecule inhibitor blocking the growth of human endothelial cells and differentially inhibiting cancer cell growth. A CRISPR genome-wide screen identified the tumor suppressor p53 and MetAP1/MetAP2 as determinants of resistance and sensitivity to pharmacologic MetAP2 inhibition. A newly identified substrate of MetAP2, translation elongation factor 1-alpha-1 (EF1a-1), served as a pharmacodynamic biomarker to follow target inhibition in cell and mouse studies. Robust angiogenesis and tumor growth inhibition was observed with M8891 monotherapy. In combination with VEGF receptor inhibitors, tumor stasis and regression occurred in patient-derived xenograft renal cell carcinoma models, particularly those that were p53 wild-type, had Von Hippel-Landau gene (VHL) loss-of-function mutations, and a mid/high MetAP1/2 expression score.


Subject(s)
Aminopeptidases , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Animals , Mice , Tumor Suppressor Protein p53/genetics , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Endothelial Cells/metabolism , Metalloendopeptidases/metabolism , Enzyme Inhibitors , Angiogenesis Inhibitors/pharmacology , Kidney Neoplasms/drug therapy
4.
Cancer Res ; 83(24): 4015-4029, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37987734

ABSTRACT

MYC is a central regulator of gene transcription and is frequently dysregulated in human cancers. As targeting MYC directly is challenging, an alternative strategy is to identify specific proteins or processes required for MYC to function as a potent cancer driver that can be targeted to result in synthetic lethality. To identify potential targets in MYC-driven cancers, we performed a genome-wide CRISPR knockout screen using an isogenic pair of breast cancer cell lines in which MYC dysregulation is the switch from benign to transformed tumor growth. Proteins that regulate R-loops were identified as a potential class of synthetic lethal targets. Dysregulated MYC elevated global transcription and coincident R-loop accumulation. Topoisomerase 1 (TOP1), a regulator of R-loops by DNA topology, was validated to be a vulnerability in cells with high MYC activity. Genetic knockdown of TOP1 in MYC-transformed cells resulted in reduced colony formation compared with control cells, demonstrating synthetic lethality. Overexpression of RNaseH1, a riboendonuclease that specifically degrades R-loops, rescued the reduction in clonogenicity induced by TOP1 deficiency, demonstrating that this vulnerability is driven by aberrant R-loop accumulation. Genetic and pharmacologic TOP1 inhibition selectively reduced the fitness of MYC-transformed tumors in vivo. Finally, drug response to TOP1 inhibitors (i.e., topotecan) significantly correlated with MYC levels and activity across panels of breast cancer cell lines and patient-derived organoids. Together, these results highlight TOP1 as a promising target for MYC-driven cancers. SIGNIFICANCE: CRISPR screening reveals topoisomerase 1 as an immediately actionable vulnerability in cancers harboring MYC as a driver oncoprotein that can be targeted with clinically approved inhibitors.


Subject(s)
Breast Neoplasms , R-Loop Structures , Humans , Female , Synthetic Lethal Mutations , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Topoisomerase I Inhibitors/pharmacology , Cell Line, Tumor
5.
Nat Struct Mol Biol ; 29(12): 1239-1251, 2022 12.
Article in English | MEDLINE | ID: mdl-36482254

ABSTRACT

Cohesin-mediated loop extrusion has been shown to be blocked at specific cis-elements, including CTCF sites, producing patterns of loops and domain boundaries along chromosomes. Here we explore such cis-elements, and their role in gene regulation. We find that transcription termination sites of active genes form cohesin- and RNA polymerase II-dependent domain boundaries that do not accumulate cohesin. At these sites, cohesin is first stalled and then rapidly unloaded. Start sites of transcriptionally active genes form cohesin-bound boundaries, as shown before, but are cohesin-independent. Together with cohesin loading, possibly at enhancers, these sites create a pattern of cohesin traffic that guides enhancer-promoter interactions. Disrupting this traffic pattern, by removing CTCF, renders cells sensitive to knockout of genes involved in transcription initiation, such as the SAGA complexes, and RNA processing such DEAD/H-Box RNA helicases. Without CTCF, these factors are less efficiently recruited to active promoters.


Subject(s)
Chromatin , Chromosomal Proteins, Non-Histone , CCCTC-Binding Factor/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cell Cycle Proteins/metabolism , Cohesins
6.
G3 (Bethesda) ; 12(8)2022 07 29.
Article in English | MEDLINE | ID: mdl-35674384

ABSTRACT

We report a chromosomal-level genome assembly of a male North American wolverine (Gulo gulo luscus) from the Kugluktuk region of Nunavut, Canada. The genome was assembled directly from long-reads, comprising: 758 contigs with a contig N50 of 36.6 Mb; contig L50 of 20; base count of 2.39 Gb; and a near complete representation (99.98%) of the BUSCO 5.2.2 set of 9,226 genes. A presumptive chromosomal-level assembly was generated by scaffolding against two chromosomal-level Mustelidae reference genomes, the ermine and the Eurasian river otter, to derive a final scaffold N50 of 144.0 Mb and a scaffold L50 of 7. We annotated a comprehensive set of genes that have been associated with models of aggressive behavior, a trait which the wolverine is purported to have in the popular literature. To support an integrated, genomics-based wildlife management strategy at a time of environmental disruption from climate change, we annotated the principal genes of the innate immune system to provide a resource to study the wolverine's susceptibility to new infectious and parasitic diseases. As a resource, we annotated genes involved in the modality of infection by the coronaviruses, an important class of viral pathogens of growing concern as shown by the recent spillover infections by severe acute respiratory syndrome coronavirus-2 to naïve wildlife. Tabulation of heterozygous single nucleotide variants in our specimen revealed a heterozygosity level of 0.065%, indicating a relatively diverse genetic pool that would serve as a baseline for the genomics-based conservation of the wolverine, a rare cold-adapted carnivore now under threat.


Subject(s)
COVID-19 , Mustelidae , Animals , Chromosomes , Genomics , Humans , Male , Mustelidae/genetics , North America
7.
Methods Mol Biol ; 2377: 1-27, 2022.
Article in English | MEDLINE | ID: mdl-34709608

ABSTRACT

Human pluripotent stem cells (hPSCs) have the capacity for self-renewal and differentiation into most cell types and, in contrast to widely used cell lines, are karyotypically normal and non-transformed. Hence, hPSCs are considered the gold-standard system for modelling diseases, especially in the field of regenerative medicine. Despite widespread research use of hPSCs and induced pluripotent stem cells (iPSCs), the systematic understanding of pluripotency and lineage differentiation mechanisms are still incomplete. Before tackling the complexities of lineage differentiation with genetic screens, it is critical to catalogue the general genetic requirements for cell fitness and proliferation in the pluripotent state and assess their plasticity under commonly used culture conditions.We describe a method to map essential genetic determinants of hPSC fitness and pluripotency, herein defined as cell reproduction, by genome-scale loss-of-function CRISPR screens in an inducible S. pyogenes Cas9 H1 hPSC line. To address questions of context-dependent gene essentiality, we include protocols for screening hPSCs cultured on feeder cells and laminin, two commonly used growth substrates. This method establishes parameters for genome-wide screens in hPSCs, making human stem cells amenable for functional genomics approaches to facilitate investigation of hPSC biology.


Subject(s)
Pluripotent Stem Cells , CRISPR-Cas Systems/genetics , Cell Differentiation/genetics , Feeder Cells , Genes, Essential , Humans
8.
Mol Syst Biol ; 17(5): e10013, 2021 05.
Article in English | MEDLINE | ID: mdl-34018332

ABSTRACT

We present FLEX (Functional evaluation of experimental perturbations), a pipeline that leverages several functional annotation resources to establish reference standards for benchmarking human genome-wide CRISPR screen data and methods for analyzing them. FLEX provides a quantitative measurement of the functional information captured by a given gene-pair dataset and a means to explore the diversity of functions captured by the input dataset. We apply FLEX to analyze data from the diverse cell line screens generated by the DepMap project. We identify a predominant mitochondria-associated signal within co-essentiality networks derived from these data and explore the basis of this signal. Our analysis and time-resolved CRISPR screens in a single cell line suggest that the variable phenotypes associated with mitochondria genes across cells may reflect screen dynamics and protein stability effects rather than genetic dependencies. We characterize this functional bias and demonstrate its relevance for interpreting differential hits in any CRISPR screening context. More generally, we demonstrate the utility of the FLEX pipeline for performing robust comparative evaluations of CRISPR screens or methods for processing them.


Subject(s)
Gene Regulatory Networks , Genetic Testing/methods , Mitochondria/genetics , Systems Biology/methods , Algorithms , Benchmarking , Bias , CRISPR-Cas Systems , Cell Line , HEK293 Cells , Humans
9.
Nat Metab ; 2(6): 499-513, 2020 06.
Article in English | MEDLINE | ID: mdl-32694731

ABSTRACT

The de novo synthesis of fatty acids has emerged as a therapeutic target for various diseases, including cancer. Because cancer cells are intrinsically buffered to combat metabolic stress, it is important to understand how cells may adapt to the loss of de novo fatty acid biosynthesis. Here, we use pooled genome-wide CRISPR screens to systematically map genetic interactions (GIs) in human HAP1 cells carrying a loss-of-function mutation in fatty acid synthase (FASN), whose product catalyses the formation of long-chain fatty acids. FASN-mutant cells show a strong dependence on lipid uptake that is reflected in negative GIs with genes involved in the LDL receptor pathway, vesicle trafficking and protein glycosylation. Further support for these functional relationships is derived from additional GI screens in query cell lines deficient in other genes involved in lipid metabolism, including LDLR, SREBF1, SREBF2 and ACACA. Our GI profiles also identify a potential role for the previously uncharacterized gene C12orf49 (which we call LUR1) in regulation of exogenous lipid uptake through modulation of SREBF2 signalling in response to lipid starvation. Overall, our data highlight the genetic determinants underlying the cellular adaptation associated with loss of de novo fatty acid synthesis and demonstrate the power of systematic GI mapping for uncovering metabolic buffering mechanisms in human cells.


Subject(s)
Fatty Acids/biosynthesis , Lipid Metabolism/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , CRISPR-Cas Systems , Cell Line , Chromosome Mapping , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Humans , Lipogenesis/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Signal Transduction , Starvation/genetics , Starvation/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism
10.
Nat Biomed Eng ; 3(10): 796-805, 2019 10.
Article in English | MEDLINE | ID: mdl-31548591

ABSTRACT

Genome-scale functional genetic screens are used to identify key genetic regulators of a phenotype of interest. However, the identification of genetic modifications that lead to a phenotypic change requires sorting large numbers of cells, which increases operational times and costs and limits cell viability. Here, we introduce immunomagnetic cell sorting facilitated by a microfluidic chip as a rapid and scalable high-throughput method for loss-of-function phenotypic screening using CRISPR-Cas9. We used the method to process an entire genome-wide screen containing more than 108 cells in less than 1 h-considerably surpassing the throughput achieved by fluorescence-activated cell sorting, the gold-standard technique for phenotypic cell sorting-while maintaining high levels of cell viability. We identified modulators of the display of CD47, which is a negative regulator of phagocytosis and an important cell-surface target for immuno-oncology drugs. The top hit of the screen, the glutaminyl cyclase QPCTL, was validated and shown to modify the N-terminal glutamine of CD47. The method presented could bridge the gap between fluorescence-activated cell sorting and less flexible yet higher-throughput systems such as magnetic-activated cell sorting.


Subject(s)
Genome , High-Throughput Screening Assays/methods , Immunomagnetic Separation/methods , Phenotype , CD47 Antigen/metabolism , CRISPR-Cas Systems , Cell Line, Tumor , Flow Cytometry , Gene Editing , Humans , Immunotherapy , Lab-On-A-Chip Devices , Neoplasms/therapy
11.
Gastroenterology ; 143(3): 675-686.e12, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22705009

ABSTRACT

BACKGROUND & AIMS: Esophageal squamous cell carcinoma (ESCC) is the most commonly observed histologic subtype of esophageal cancer. ESCC is believed to develop via accumulation of numerous genetic alterations, including inactivation of tumor suppressor genes and activation of oncogenes. We searched for transcripts that were altered in human ESCC samples compared with nontumor tissues. METHODS: We performed integrative transcriptome sequencing (RNA-Seq) analysis using ESCC samples from 3 patients and adjacent nontumor tissues to identify transcripts that were altered in ESCC tissue. We performed molecular and functional studies of the transcripts identified and investigated the mechanisms of alteration. RESULTS: We identified protein tyrosine kinase 6 (PTK6) as a transcript that was significantly down-regulated in ESCC tissues and cell lines compared with nontumor tissues or immortalized normal esophageal cell lines. The promoter of the PTK6 gene was inactivated in ESCC tissues at least in part via hypermethylation and histone deacetylation. Knockdown of PTK6 in KYSE30 ESCC cells using small hairpin RNAs increased their ability to form foci, migrate, and invade extracellular matrix in culture and form tumors in nude mice. Overexpression of PTK6 in these cells reduced their proliferation in culture and tumor formation in mice. PTK6 reduced phosphorylation of Akt and glycogen synthase kinase (GSK)3ß, leading to activation of ß-catenin. CONCLUSIONS: PTK6 was identified as a transcript that is down-regulated in human ESCC tissues via epigenetic modification at the PTK6 locus. Its product appears to regulate cell proliferation by reducing phosphorylation of Akt and GSK3ß, leading to activation of ß-catenin. Reduced levels of PTK6 promote growth of xenograft tumors in mice; it might be developed as a marker of ESCC.


Subject(s)
Carcinoma, Squamous Cell/enzymology , Esophageal Neoplasms/enzymology , Neoplasm Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Acetylation , Adult , Animals , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , DNA Methylation , Epigenesis, Genetic , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Extracellular Matrix/metabolism , Female , G1 Phase Cell Cycle Checkpoints , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Histones/metabolism , Humans , Male , Mice , Mice, Nude , Middle Aged , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Phosphorylation , Promoter Regions, Genetic , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , RNA, Messenger/metabolism , Sequence Analysis, RNA , Signal Transduction , Transcription, Genetic , Transfection , Tumor Suppressor Proteins/genetics , beta Catenin/metabolism
12.
PLoS One ; 7(5): e36939, 2012.
Article in English | MEDLINE | ID: mdl-22590638

ABSTRACT

Whether certain Epstein-Barr virus (EBV) strains are associated with pathogenesis of nasopharyngeal carcinoma (NPC) is still an unresolved question. In the present study, EBV genome contained in a primary NPC tumor biopsy was amplified by Polymerase Chain Reaction (PCR), and sequenced using next-generation (Illumina) and conventional dideoxy-DNA sequencing. The EBV genome, designated HKNPC1 (Genbank accession number JQ009376) is a type 1 EBV of approximately 171.5 kb. The virus appears to be a uniform strain in line with accepted monoclonal nature of EBV in NPC but is heterogeneous at 172 nucleotide positions. Phylogenetic analysis with the four published EBV strains, B95-8, AG876, GD1, and GD2, indicated HKNPC1 was more closely related to the Chinese NPC patient-derived strains, GD1 and GD2. HKNPC1 contains 1,589 single nucleotide variations (SNVs) and 132 insertions or deletions (indels) in comparison to the reference EBV sequence (accession number NC007605). When compared to AG876, a strain derived from Ghanaian Burkitt's lymphoma, we found 322 SNVs, of which 76 were non-synonymous SNVs and were shared amongst the Chinese GD1, GD2 and HKNPC1 isolates. We observed 88 non-synonymous SNVs shared only by HKNPC1 and GD2, the only other NPC tumor-derived strain reported thus far. Non-synonymous SNVs were mainly found in the latent, tegument and glycoprotein genes. The same point mutations were found in glycoprotein (BLLF1 and BALF4) genes of GD1, GD2 and HKNPC1 strains and might affect cell type specific binding. Variations in LMP1 and EBNA3B epitopes and mutations in Cp (11404 C>T) and Qp (50134 G>C) found in GD1, GD2 and HKNPC1 could potentially affect CD8(+) T cell recognition and latent gene expression pattern in NPC, respectively. In conclusion, we showed that whole genome sequencing of EBV in NPC may facilitate discovery of previously unknown variations of pathogenic significance.


Subject(s)
Genome, Viral , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/isolation & purification , Nasopharyngeal Neoplasms , Viral Proteins/genetics , Adult , Base Sequence , Biopsy , Humans , Male , Molecular Sequence Data , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/virology , Sequence Analysis, DNA
13.
J Infect Dis ; 206(3): 341-51, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22615319

ABSTRACT

A scarlet fever outbreak occurred in Hong Kong in 2011. The majority of cases resulted in the isolation of Streptococcus pyogenes emm12 with multiple antibiotic resistances. Phylogenetic analysis of 22 emm12 scarlet fever outbreak isolates, 7 temporally and geographically matched emm12 non-scarlet fever isolates, and 18 emm12 strains isolated during 2005-2010 indicated the outbreak was multiclonal. Genome sequencing of 2 nonclonal scarlet fever isolates (HKU16 and HKU30), coupled with diagnostic polymerase chain reaction assays, identified 2 mobile genetic elements distributed across the major lineages: a 64.9-kb integrative and conjugative element encoding tetracycline and macrolide resistance and a 46.4-kb prophage encoding superantigens SSA and SpeC and the DNase Spd1. Phenotypic comparison of HKU16 and HKU30 with the S. pyogenes M1T1 strain 5448 revealed that HKU16 displays increased adherence to HEp-2 human epithelial cells, whereas HKU16, HKU30, and 5448 exhibit equivalent resistance to neutrophils and virulence in a humanized plasminogen murine model. However, in contrast to M1T1, the virulence of HKU16 and HKU30 was not associated with covRS mutation. The multiclonal nature of the emm12 scarlet fever isolates suggests that factors such as mobile genetic elements, environmental factors, and host immune status may have contributed to the 2011 scarlet fever outbreak.


Subject(s)
Disease Outbreaks , Scarlet Fever/epidemiology , Scarlet Fever/microbiology , Streptococcus pyogenes/classification , Streptococcus pyogenes/genetics , Adolescent , Adult , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Child , Child, Preschool , Female , Gene Expression Profiling , Gene Expression Regulation, Bacterial/physiology , Genome, Bacterial , Genomics , Hong Kong/epidemiology , Humans , Infant , Interspersed Repetitive Sequences , Male , Middle Aged , Molecular Epidemiology , Phenotype , Phylogeny , Streptococcus pyogenes/drug effects
14.
Vet Microbiol ; 158(1-2): 172-9, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22386670

ABSTRACT

Few studies have compared CTX-M encoding plasmids identified in different ecological sources. This study aimed to analyze and compare the molecular epidemiology of plasmids encoding CTX-M-14 among strains from humans and animals. The CTX-M-14 encoding plasmids in 160 Escherichia coli isolates from animal faecal (14 pigs, 16 chickens, 12 cats, 8 cattle, 5 dogs and 3 rodents), human faecal (45 adults and 20 children) and human urine (37 adults) sources in 2002-2010 were characterized by molecular methods. The replicon types of the CTX-M-14 encoding plasmids were IncFII (n=61), I1-Iγ (n=24), other F types (n=23), B/O (n=10), K (n=6), N (n=3), A/C (n=1), HI1 (n=1), HI2 (n=1) and nontypeable (n=30). The genetic environment, ISEcp1 -bla(CTX-M-14) - IS903 was found in 89.7% (52/58), 87.7% (57/65) and 86.5% (32/37) of the animal faecal, human faecal and human urine isolates, respectively. Subtyping of the 61 IncFII incompatibility group plasmids by replicon sequence typing, plasmid PCR-restriction fragment length polymorphism and marker genes (yac, malB, eitA/eitC and parB/A) profiles showed that 31% (18/58), 30.6% (20/65) and 37.8% (14/37) of the plasmids originating from animal faecal, human faecal and human urine isolates, respectively, were pHK01-like. These 52 pHK01-like plasmids originated from diverse human (20 faecal isolates from 2002, 2007 to 2008, 14 urinary isolates from 2004) and animal (all faecal, 1 cattle, 1 chicken, 5 pigs, 9 cats, 1 dog, 1 rodent from 2008 to 2010) sources. In conclusion, this study highlights the importance of the IncFII group, pHK01-like plasmids in the dissemination of CTX-M-14 among isolates from diverse sources.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli/genetics , Escherichia coli/isolation & purification , Plasmids , Adult , Animals , Child , Escherichia coli Infections/epidemiology , Escherichia coli Proteins/genetics , Feces/microbiology , Female , Humans , Molecular Epidemiology , Urine/microbiology , beta-Lactamases/genetics
15.
J Antimicrob Chemother ; 66(4): 752-6, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21393220

ABSTRACT

OBJECTIVES: We characterized plasmids encoding CTX-M-14 ß-lactamase originating from Escherichia coli isolates recovered from patients with uncomplicated cystitis or individuals with faecal colonization in Hong Kong from 2002 to 2004. METHODS: Plasmids carrying CTX-M-14 were studied by conjugation, replicon typing, S1 nuclease-PFGE and plasmid PCR-restriction fragment length polymorphism (RFLP). The complete sequence of pHK01, a 70 kb plasmid encoding CTX-M-14 from an E. coli strain, was determined and the results compared with reference plasmids and aligned with GenBank data. RESULTS: The blaCTX-M-14 plasmids could be transferred in 23 of 44 E. coli strains tested. Among the 23 transconjugants, the replicon types of the CTX-M-14-encoding plasmid were FII (n=13), I1-Iγ (n=4), F1B (n=2), FII and I1-Iγ (n=1), K (80 kb, n=1) and undetermined (n=2). Plasmid pHK01 (FII replicon) shares a high degree of homology with R100 except mainly for a 11 kb variable region containing blaCTX-M-14 (with an upstream ISEcp1 and a downstream truncated IS903), an iron transport system, an outer membrane protein (malB, maltoporin) and a putative toxin-antitoxin plasmid stability system (yacABC). It was highly related to blaCTX-M-14 (pKF3-70) and blaCTX-M-24 (pEG356) plasmids reported from mainland China in 2006 and Vietnam in 2007, respectively. Subtyping by a plasmid PCR-RFLP scheme showed that 10 of the 13 FII plasmids originating from isolates collected by multiple laboratories exhibited either identical or highly similar profiles. CONCLUSIONS: This study showed that narrow host-range FII plasmids play important roles in the dissemination of CTX-M-14. FII plasmids closely related to pHK01 have disseminated widely in the Hong Kong community.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Escherichia coli/genetics , Plasmids , Adult , Child , Child, Preschool , Conjugation, Genetic , Cystitis/microbiology , Escherichia coli/enzymology , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Female , Genotype , Hong Kong , Humans , Molecular Sequence Data , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA , beta-Lactamases/genetics
16.
Nat Methods ; 8(2): 159-64, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21217751

ABSTRACT

Phenotypes that might otherwise reveal a gene's function can be obscured by genes with overlapping function. This phenomenon is best known within gene families, in which an important shared function may only be revealed by mutating all family members. Here we describe the 'green monster' technology that enables precise deletion of many genes. In this method, a population of deletion strains with each deletion marked by an inducible green fluorescent protein reporter gene, is subjected to repeated rounds of mating, meiosis and flow-cytometric enrichment. This results in the aggregation of multiple deletion loci in single cells. The green monster strategy is potentially applicable to assembling other engineered alterations in any species with sex or alternative means of allelic assortment. To test the technology, we generated a single broadly drug-sensitive strain of Saccharomyces cerevisiae bearing precise deletions of all 16 ATP-binding cassette transporters within clades associated with multidrug resistance.


Subject(s)
Gene Deletion , Gene Knockout Techniques/methods , Green Fluorescent Proteins/analysis , Multigene Family , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Green Fluorescent Proteins/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism
17.
J Biol ; 4(2): 6, 2005.
Article in English | MEDLINE | ID: mdl-15982408

ABSTRACT

BACKGROUND: Large-scale studies have revealed networks of various biological interaction types, such as protein-protein interaction, genetic interaction, transcriptional regulation, sequence homology, and expression correlation. Recurring patterns of interconnection, or 'network motifs', have revealed biological insights for networks containing either one or two types of interaction. RESULTS: To study more complex relationships involving multiple biological interaction types, we assembled an integrated Saccharomyces cerevisiae network in which nodes represent genes (or their protein products) and differently colored links represent the aforementioned five biological interaction types. We examined three- and four-node interconnection patterns containing multiple interaction types and found many enriched multi-color network motifs. Furthermore, we showed that most of the motifs form 'network themes' -- classes of higher-order recurring interconnection patterns that encompass multiple occurrences of network motifs. Network themes can be tied to specific biological phenomena and may represent more fundamental network design principles. Examples of network themes include a pair of protein complexes with many inter-complex genetic interactions -- the 'compensatory complexes' theme. Thematic maps -- networks rendered in terms of such themes -- can simplify an otherwise confusing tangle of biological relationships. We show this by mapping the S. cerevisiae network in terms of two specific network themes. CONCLUSION: Significantly enriched motifs in an integrated S. cerevisiae interaction network are often signatures of network themes, higher-order network structures that correspond to biological phenomena. Representing networks in terms of network themes provides a useful simplification of complex biological relationships.


Subject(s)
Gene Expression Regulation, Fungal , Genes, Fungal/genetics , Genome , Saccharomyces cerevisiae/genetics , Amino Acid Motifs/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Models, Biological , Saccharomyces cerevisiae/metabolism , Systems Integration
18.
Proc Natl Acad Sci U S A ; 101(44): 15682-7, 2004 Nov 02.
Article in English | MEDLINE | ID: mdl-15496468

ABSTRACT

Genetic interactions define overlapping functions and compensatory pathways. In particular, synthetic sick or lethal (SSL) genetic interactions are important for understanding how an organism tolerates random mutation, i.e., genetic robustness. Comprehensive identification of SSL relationships remains far from complete in any organism, because mapping these networks is highly labor intensive. The ability to predict SSL interactions, however, could efficiently guide further SSL discovery. Toward this end, we predicted pairs of SSL genes in Saccharomyces cerevisiae by using probabilistic decision trees to integrate multiple types of data, including localization, mRNA expression, physical interaction, protein function, and characteristics of network topology. Experimental evidence demonstrated the reliability of this strategy, which, when extended to human SSL interactions, may prove valuable in discovering drug targets for cancer therapy and in identifying genes responsible for multigenic diseases.


Subject(s)
Models, Genetic , Mutation , Phenotype , Animals , Databases, Genetic , Decision Trees , Genotype , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...