Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1308530, 2023.
Article in English | MEDLINE | ID: mdl-38332914

ABSTRACT

Introduction: Early diagnosis of sepsis and discrimination from SIRS is crucial for clinicians to provide appropriate care, management and treatment to critically ill patients. We describe identification of mRNA biomarkers from peripheral blood leukocytes, able to identify severe, systemic inflammation (irrespective of origin) and differentiate Sepsis from SIRS, in adult patients within a multi-center clinical study. Methods: Participants were recruited in Intensive Care Units (ICUs) from multiple UK hospitals, including fifty-nine patients with abdominal sepsis, eighty-four patients with pulmonary sepsis, forty-two SIRS patients with Out-of-Hospital Cardiac Arrest (OOHCA), sampled at four time points, in addition to thirty healthy control donors. Multiple clinical parameters were measured, including SOFA score, with many differences observed between SIRS and sepsis groups. Differential gene expression analyses were performed using microarray hybridization and data analyzed using a combination of parametric and non-parametric statistical tools. Results: Nineteen high-performance, differentially expressed mRNA biomarkers were identified between control and combined SIRS/Sepsis groups (FC>20.0, p<0.05), termed 'indicators of inflammation' (I°I), including CD177, FAM20A and OLAH. Best-performing minimal signatures e.g. FAM20A/OLAH showed good accuracy for determination of severe, systemic inflammation (AUC>0.99). Twenty entities, termed 'SIRS or Sepsis' (S°S) biomarkers, were differentially expressed between sepsis and SIRS (FC>2·0, p-value<0.05). Discussion: The best performing signature for discriminating sepsis from SIRS was CMTM5/CETP/PLA2G7/MIA/MPP3 (AUC=0.9758). The I°I and S°S signatures performed variably in other independent gene expression datasets, this may be due to technical variation in the study/assay platform.


Subject(s)
Sepsis , Systemic Inflammatory Response Syndrome , Adult , Humans , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/genetics , Point-of-Care Systems , Sepsis/diagnosis , Sepsis/genetics , Biomarkers , Inflammation/diagnosis , Inflammation/genetics , Gene Expression , RNA, Messenger , Chemokines , MARVEL Domain-Containing Proteins
2.
Front Immunol ; 11: 380, 2020.
Article in English | MEDLINE | ID: mdl-32318053

ABSTRACT

Sepsis is defined as dysregulated host response caused by systemic infection, leading to organ failure. It is a life-threatening condition, often requiring admission to an intensive care unit (ICU). The causative agents and processes involved are multifactorial but are characterized by an overarching inflammatory response, sharing elements in common with severe inflammatory response syndrome (SIRS) of non-infectious origin. Sepsis presents with a range of pathophysiological and genetic features which make clinical differentiation from SIRS very challenging. This may reflect a poor understanding of the key gene inter-activities and/or pathway associations underlying these disease processes. Improved understanding is critical for early differential recognition of sepsis and SIRS and to improve patient management and clinical outcomes. Judicious selection of gene biomarkers suitable for development of diagnostic tests/testing could make differentiation of sepsis and SIRS feasible. Here we describe a methodologic framework for the identification and validation of biomarkers in SIRS, sepsis and septic shock patients, using a 2-tier gene screening, artificial neural network (ANN) data mining technique, using previously published gene expression datasets. Eight key hub markers have been identified which may delineate distinct, core disease processes and which show potential for informing underlying immunological and pathological processes and thus patient stratification and treatment. These do not show sufficient fold change differences between the different disease states to be useful as primary diagnostic biomarkers, but are instrumental in identifying candidate pathways and other associated biomarkers for further exploration.


Subject(s)
Computational Biology/methods , Genetic Markers , Neural Networks, Computer , Sepsis/genetics , Systemic Inflammatory Response Syndrome/genetics , Humans , Sepsis/diagnosis , Systemic Inflammatory Response Syndrome/diagnosis
3.
Cytometry A ; 87(7): 616-23, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25572884

ABSTRACT

The dramatic increase in the complexity of flow cytometric datasets requires new computational approaches that can maximize the amount of information derived and overcome the limitations of traditional gating strategies. Herein, we present a multivariate computational analysis of the HIV-infected flow cytometry datasets that were provided as part of the FlowCAP-IV Challenge using unsupervised and supervised learning techniques. Out of 383 samples (stimulated and unstimulated), 191 samples were used as a training set (34 individuals whose disease did not progress, and 157 individuals whose disease did progress). Using the results from the training set, the participants in the Challenge were then asked to predict the condition and progression time of the remaining individuals (45 "nonprogressors" and 147 "progressors"). To achieve this, we first scaled down data resolution and then excluded doublet cells from the analysis using Expectation Maximization approaches. We then standardized all samples into histograms and used Genetic Algorithm-Neural Network to extract feature sets from the datasets, the reliability of which were examined using WEKA-implemented classifiers. The selected feature set resulted in a high sensitivity and specificity for the discrimination of progressors and nonprogressors in the training set (average True Positive Rate = 1.00 and average False Positive Rate = 0.033). The capacity of the feature set to predict real-time survival time was better when using data from the "unstimulated" training set (r = 0.825). The P-values and 95% confidence interval log-rank ratios between actual and predicted survival time in the test set were 0.682 and 0.9542 ± 0.24 for the unstimulated dataset, and 0.4451 and 0.9173 ± 0.23 for the stimulated dataset. Our analytic strategy has demonstrated a promising capacity to extract useful information from complex flow cytometry datasets, despite a significance imbalance and variation between the training and test sets.


Subject(s)
Computational Biology/methods , Disease Progression , Electronic Data Processing/methods , Flow Cytometry/methods , HIV Infections/diagnosis , Algorithms , Cluster Analysis , Humans , Multivariate Analysis , Prognosis
4.
PLoS One ; 9(7): e102483, 2014.
Article in English | MEDLINE | ID: mdl-25025207

ABSTRACT

OBJECTIVE: To model the potential interaction between previously identified biomarkers in children sarcomas using artificial neural network inference (ANNI). METHOD: To concisely demonstrate the biological interactions between correlated genes in an interaction network map, only 2 types of sarcomas in the children small round blue cell tumors (SRBCTs) dataset are discussed in this paper. A backpropagation neural network was used to model the potential interaction between genes. The prediction weights and signal directions were used to model the strengths of the interaction signals and the direction of the interaction link between genes. The ANN model was validated using Monte Carlo cross-validation to minimize the risk of over-fitting and to optimize generalization ability of the model. RESULTS: Strong connection links on certain genes (TNNT1 and FNDC5 in rhabdomyosarcoma (RMS); FCGRT and OLFM1 in Ewing's sarcoma (EWS)) suggested their potency as central hubs in the interconnection of genes with different functionalities. The results showed that the RMS patients in this dataset are likely to be congenital and at low risk of cardiomyopathy development. The EWS patients are likely to be complicated by EWS-FLI fusion and deficiency in various signaling pathways, including Wnt, Fas/Rho and intracellular oxygen. CONCLUSIONS: The ANN network inference approach and the examination of identified genes in the published literature within the context of the disease highlights the substantial influence of certain genes in sarcomas.


Subject(s)
Biomarkers, Tumor/genetics , Epistasis, Genetic , Neural Networks, Computer , Sarcoma/genetics , Child , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genes, Neoplasm , Humans , Models, Genetic
5.
Artif Intell Med ; 53(1): 47-56, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21775110

ABSTRACT

OBJECTIVE: Suitable techniques for microarray analysis have been widely researched, particularly for the study of marker genes expressed to a specific type of cancer. Most of the machine learning methods that have been applied to significant gene selection focus on the classification ability rather than the selection ability of the method. These methods also require the microarray data to be preprocessed before analysis takes place. The objective of this study is to develop a hybrid genetic algorithm-neural network (GANN) model that emphasises feature selection and can operate on unpreprocessed microarray data. METHOD: The GANN is a hybrid model where the fitness value of the genetic algorithm (GA) is based upon the number of samples correctly labelled by a standard feedforward artificial neural network (ANN). The model is evaluated by using two benchmark microarray datasets with different array platforms and differing number of classes (a 2-class oligonucleotide microarray data for acute leukaemia and a 4-class complementary DNA (cDNA) microarray dataset for SRBCTs (small round blue cell tumours)). The underlying concept of the GANN algorithm is to select highly informative genes by co-evolving both the GA fitness function and the ANN weights at the same time. RESULTS: The novel GANN selected approximately 50% of the same genes as the original studies. This may indicate that these common genes are more biologically significant than other genes in the datasets. The remaining 50% of the significant genes identified were used to build predictive models and for both datasets, the models based on the set of genes extracted by the GANN method produced more accurate results. The results also suggest that the GANN method not only can detect genes that are exclusively associated with a single cancer type but can also explore the genes that are differentially expressed in multiple cancer types. CONCLUSIONS: The results show that the GANN model has successfully extracted statistically significant genes from the unpreprocessed microarray data as well as extracting known biologically significant genes. We also show that assessing the biological significance of genes based on classification accuracy may be misleading and though the GANN's set of extra genes prove to be more statistically significant than those selected by other methods, a biological assessment of these genes is highly recommended to confirm their functionality.


Subject(s)
Algorithms , Neoplasms/genetics , Neural Networks, Computer , Oligonucleotide Array Sequence Analysis/methods , Artificial Intelligence , Gene Expression Profiling/methods , Neoplasms/classification , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL