Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(18): 7947-7957, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38676647

ABSTRACT

Volatility of organic aerosols (OAs) significantly influences new particle formation and the occurrence of particulate air pollution. However, the relationship between the volatility of OA and the level of particulate air pollution (i.e., particulate matter concentration) is not well understood. In this study, we compared the chemical composition (identified by an ultrahigh-resolution Orbitrap mass spectrometer) and volatility (estimated based on a predeveloped parametrization method) of OAs in urban PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 µm) samples from seven German and Chinese cities, where the PM2.5 concentration ranged from a light (14 µg m-3) to heavy (319 µg m-3) pollution level. A large fraction (71-98%) of compounds in PM2.5 samples were attributable to intermediate-volatility organic compounds (IVOCs) and semivolatile organic compounds (SVOCs). The fraction of low-volatility organic compounds (LVOCs) and extremely low-volatility organic compounds (ELVOCs) decreased from clean (28%) to heavily polluted urban regions (2%), while that of IVOCs increased from 34 to 62%. We found that the average peak area-weighted volatility of organic compounds in different cities showed a logarithmic correlation with the average PM2.5 concentration, indicating that the volatility of urban OAs increases with the increase of air pollution level. Our results provide new insights into the relationship between OA volatility and PM pollution levels and deepen the understanding of urban air pollutant evolution.


Subject(s)
Aerosols , Air Pollutants , Air Pollution , Mass Spectrometry , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Volatilization , Organic Chemicals/analysis , China , Volatile Organic Compounds/analysis
2.
Carbohydr Polym ; 326: 121623, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142100

ABSTRACT

A novel cellulose nanofibril/titanate nanofiber modified with CdS quantum dots hydrogel (CTH) was synthesized as an effective, stable, and recyclable photocatalytic adsorbent using cellulose nanofibril (CN), titanate nanofiber (TN), and CdS quantum dots. Within the CTH structure, CN formed an essential framework, creating a three-dimensional (3D) porous structure that enhanced the specific surface area and provided abundant adsorption sites for Cr(VI). Simultaneously, TN modified with CdS quantum dots (TN-CdS) served as a nanoscale Z-type photocatalyst, facilitating the efficient separation of photoinduced electrons and holes, further increasing the photocatalytic efficiency. The morphological, chemical, and optical properties of CTH were thoroughly characterized. The CTH demonstrated the maximum theoretical adsorption capacity of 373.3 ± 14.2 mg/g, which was 3.4 times higher than that of CN hydrogel. Furthermore, the photocatalytic reduction rate constant of the CTH was 0.0586 ± 0.0038 min-1, which was 6.4 times higher than that of TN-CdS. Notably, CTH displayed outstanding stability, maintaining 84.9 % of its initial removal efficiency even after undergoing five consecutive adsorption-desorption cycles. The remarkable performance of CTH in Cr(VI) removal was attributed to its 3D porous structure, comprising CN and TN-CdS. These findings provide novel insights into developing a stable photocatalytic adsorbent for Cr(VI) removal.

3.
Environ Sci Pollut Res Int ; 30(6): 16749-16755, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36550248

ABSTRACT

Redox-active substances in fine particulate matter (PM) contribute to inhalation health risks through their potential to generate reactive oxygen species in epithelial lung lining fluid (ELF). The ELF's air-liquid interface (ALI) can play an important role in the phase transfer and multi-phase reactions of redox-active PM constituents. We investigated the influence of interfacial processes and properties by scrubbing of coated nano-particles with simulated ELF in a nebulizing mist chamber. Weakly water-soluble redox-active organics abundant in ambient fine PM were reproducibly loaded into ELF via ALI mixing. The resulting oxidative potential (OP) of selected quinones and other PAH derivatives were found to exceed the OP resulting from bulk mixing of the same amounts of redox-active substances and ELF. Our results indicate that the OP of PM components depends not only on the PM substance properties but also on the ELF interface properties and uptake mechanisms. OP measurements based on bulk mixing of phases may not represent the effective OP in the human lung.


Subject(s)
Air Pollutants , Particulate Matter , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Reactive Oxygen Species , Oxidation-Reduction , Oxidative Stress
4.
Rapid Commun Mass Spectrom ; 35(14): e9113, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33908097

ABSTRACT

RATIONALE: Organic aerosols (OA) account for a large fraction of atmospheric fine particulate matter and thus are affecting climate and public health. Elucidation of the chemical composition of OA is the key for addressing the role of ambient fine particles at the atmosphere-biosphere interface and mass spectrometry is the main method to achieve this goal. METHODS: High-resolution mass spectrometry (HRMS) is on its way to becoming one of the most prominent analytical techniques, also for the analysis of atmospheric aerosols. The combination of high mass resolution and accurate mass determination allows the elemental compositions of numerous compounds to be easily elucidated. Here a new parameter for the improved classification of OA is introduced - the maximum carbonyl ratio (MCR) - which is directly derived from the molecular composition and is particularly suitable for the identification and characterization of secondary organic aerosols (SOA). RESULTS: The concept is exemplified by the analysis of ambient OA samples from two measurement sites (Hyytiälä, Finland; Beijing, China) and of laboratory-generated SOA based on ultrahigh-performance liquid chromatography (UHPLC) coupled to Orbitrap MS. To interpret the results, MCR-Van Krevelen (VK) diagrams are generated for the different OA samples and the individual compounds are categorized into specific areas in the diagrams. The results show that the MCR index is a valuable parameter for representing atmospheric SOA components in composition and structure-dependent visualization tools such as VK diagrams. CONCLUSIONS: The MCR index is suggested as a tool for a better characterization of the sources and the processing of atmospheric OA components based on HRMS data. Since the MCR contains information on the concentration of highly electrophilic organic compounds in particulate matter (PM) as well as on the concentration of organic (hydro)peroxides, the MCR could be a promising metric for identifying health-related particulate matter parameters by HRMS.

5.
Environ Sci Technol ; 54(5): 2615-2625, 2020 03 03.
Article in English | MEDLINE | ID: mdl-31950831

ABSTRACT

Among the nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are some of the most hazardous substances to public health, mainly because of their carcinogenicity and oxidative potential. Despite these concerns, the concentrations and fate of NPAHs and OPAHs in the atmospheric environment are largely unknown. Ambient air concentrations of 18 NPAHs, 5 quinones, and 5 other OPAHs were determined at two urban and one regional background sites in central Europe. At one of the urban sites, the total (gas and particulate) concentrations of Σ10OPAHs were 10.0 ± 9.2 ng/m3 in winter and 3.5 ± 1.6 ng/m3 in summer. The gradient to the regional background site exceeded 1 order of magnitude. Σ18NPAH concentrations were typically 1 order of magnitude lower than OPAHs. Among OPAHs, 9-fluorenone and (9,10)-anthraquinone were the most abundant species, accompanied by benzanthrone in winter. (9,10)-Anthraquinone represented two-thirds of quinones. We found that a large fraction of the target substance particulate mass was carried by submicrometer particles. The derived inhalation bioaccessibility in the PM10 size fraction is found to be ≈5% of the total ambient concentration of OPAHs and up to ≈2% for NPAHs. For 9-fluorenone and (9,10)-anthraquinone, up to 86 and 18%, respectively, were found at the rural site. Our results indicate that water solubility could function as a limiting factor for bioaccessibility of inhaled particulate NPAHs and OPAHs, without considerable effect of surfactant lipids and proteins in the lung lining fluid.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Environmental Monitoring , Europe , Humans , Nitrates , Particulate Matter
6.
Environ Sci Technol ; 53(21): 12506-12518, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31536707

ABSTRACT

Highly oxygenated molecules (HOMs) play an important role in the formation and evolution of secondary organic aerosols (SOA). However, the abundance of HOMs in different environments and their relation to the oxidative potential of fine particulate matter (PM) are largely unknown. Here, we investigated the relative HOM abundance and radical yield of laboratory-generated SOA and fine PM in ambient air ranging from remote forest areas to highly polluted megacities. By electron paramagnetic resonance and mass spectrometric investigations, we found that the relative abundance of HOMs, especially the dimeric and low-volatility types, in ambient fine PM was positively correlated with the formation of radicals in aqueous PM extracts. SOA from photooxidation of isoprene, ozonolysis of α- and ß-pinene, and fine PM from tropical (central Amazon) and boreal (Hyytiälä, Finland) forests exhibited a higher HOM abundance and radical yield than SOA from photooxidation of naphthalene and fine PM from urban sites (Beijing, Guangzhou, Mainz, Shanghai, and Xi'an), confirming that HOMs are important constituents of biogenic SOA to generate radicals. Our study provides new insights into the chemical relationship of HOM abundance, composition, and sources with the yield of radicals by laboratory and ambient aerosols, enabling better quantification of the component-specific contribution of source- or site-specific fine PM to its climate and health effects.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols , Beijing , China , Finland
7.
RSC Adv ; 9(20): 11077-11081, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-35520271

ABSTRACT

Cerium oxide nanoparticles (CeNPs) have been shown to exhibit antioxidant capabilities, but their efficiency in scavenging reactive oxygen species (ROS) and the underlying mechanisms are not yet well understood. In this study, cerium dioxide nanoparticles (CeNPs) and nanorods (CeNRs) were found to exhibit much stronger scavenging activity than ·OH generation in phosphate buffered saline (PBS) and surrogate lung fluid (SLF). The larger surface area and higher defect density of CeNRs may lead to higher ·OH scavenging activity than for CeNPs. These insights are important to understand the redox activity of cerium nanomaterials and provide clues to the role of CeNPs in biological and environmental processes.

8.
Environ Sci Technol ; 52(20): 11642-11651, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30234977

ABSTRACT

Reactive oxygen species (ROS) play a central role in adverse health effects of air pollutants. Respiratory deposition of fine air particulate matter can lead to the formation of ROS in epithelial lining fluid, potentially causing oxidative stress and inflammation. Secondary organic aerosols (SOA) account for a large fraction of fine particulate matter, but their role in adverse health effects is unclear. Here, we quantify and compare the ROS yields and oxidative potential of isoprene, ß-pinene, and naphthalene SOA in water and surrogate lung fluid (SLF). In pure water, isoprene and ß-pinene SOA were found to produce mainly OH and organic radicals, whereas naphthalene SOA produced mainly H2O2 and O2•-. The total molar yields of ROS of isoprene and ß-pinene SOA were 11.8% and 8.2% in water and decreased to 8.5% and 5.2% in SLF, which can be attributed to ROS removal by lung antioxidants. A positive correlation between the total peroxide concentration and ROS yield suggests that organic (hydro)peroxides may play an important role in ROS formation from biogenic SOA. The total molar ROS yields of naphthalene SOA was 1.7% in water and increased to 11.3% in SLF. This strong increase is likely due to redox reaction cycles involving environmentally persistent free radicals (EPFR) or semiquinones, antioxidants, and oxygen, which may promote the formation of H2O2 and the adverse health effects of anthropogenic SOA from aromatic precursors.


Subject(s)
Air Pollutants , Water , Aerosols , Hydrogen Peroxide , Reactive Oxygen Species
9.
Environ Sci Technol ; 51(23): 13545-13567, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29111690

ABSTRACT

Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.


Subject(s)
Aerosols , Air Pollutants , Epidemiologic Studies , Air Pollution , Particulate Matter
10.
Faraday Discuss ; 200: 251-270, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28574563

ABSTRACT

Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (<3) conditions. ROS formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H2O2 with Fe2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H2O2 and Fe2+. In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.


Subject(s)
Air Pollutants/metabolism , Atmosphere/chemistry , Minerals/metabolism , Public Health , Reactive Oxygen Species/metabolism , Aerosols/chemistry , Aerosols/metabolism , Air Pollutants/chemistry , Minerals/chemistry , Particulate Matter/chemistry , Particulate Matter/metabolism , Water/chemistry , Water/metabolism
11.
Faraday Discuss ; 200: 413-427, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28574569

ABSTRACT

The allergenic potential of airborne proteins may be enhanced via post-translational modification induced by air pollutants like ozone (O3) and nitrogen dioxide (NO2). The molecular mechanisms and kinetics of the chemical modifications that enhance the allergenicity of proteins, however, are still not fully understood. Here, protein tyrosine nitration and oligomerization upon simultaneous exposure of O3 and NO2 were studied in coated-wall flow-tube and bulk solution experiments under varying atmospherically relevant conditions (5-200 ppb O3, 5-200 ppb NO2, 45-96% RH), using bovine serum albumin as a model protein. Generally, more tyrosine residues were found to react via the nitration pathway than via the oligomerization pathway. Depending on reaction conditions, oligomer mass fractions and nitration degrees were in the ranges of 2.5-25% and 0.5-7%, respectively. The experimental results were well reproduced by the kinetic multilayer model of aerosol surface and bulk chemistry (KM-SUB). The extent of nitration and oligomerization strongly depends on relative humidity (RH) due to moisture-induced phase transition of proteins, highlighting the importance of cloud processing conditions for accelerated protein chemistry. Dimeric and nitrated species were major products in the liquid phase, while protein oligomerization was observed to a greater extent for the solid and semi-solid phase states of proteins. Our results show that the rate of both processes was sensitive towards ambient ozone concentration, but rather insensitive towards different NO2 levels. An increase of tropospheric ozone concentrations in the Anthropocene may thus promote pro-allergic protein modifications and contribute to the observed increase of allergies over the past decades.


Subject(s)
Air Pollutants/chemistry , Atmosphere/chemistry , Nitrogen Dioxide/chemistry , Ozone/chemistry , Proteins/chemistry , Air Pollutants/metabolism , Nitrogen Dioxide/metabolism , Ozone/metabolism , Proteins/metabolism
12.
Anal Bioanal Chem ; 409(9): 2411-2420, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28108753

ABSTRACT

Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.


Subject(s)
Amino Acids/chemistry , Hydroxyl Radical/chemistry , Peptides/chemistry , Proteins/chemistry , Oxidation-Reduction , Reactive Oxygen Species/chemistry
13.
Sci Rep ; 6: 32916, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27605301

ABSTRACT

Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.


Subject(s)
Air Pollutants/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Respiratory System/metabolism , Air Pollutants/adverse effects , Air Pollutants/chemistry , Antioxidants/chemistry , Epithelial Cells/metabolism , Humans , Models, Biological , Ozone/chemistry , Particulate Matter/adverse effects , Particulate Matter/chemistry , Particulate Matter/metabolism , Reactive Oxygen Species/chemistry , Respiratory System/chemistry , Surface-Active Agents/chemistry
14.
Faraday Discuss ; 189: 51-68, 2016 07 18.
Article in English | MEDLINE | ID: mdl-27143100

ABSTRACT

Organic aerosol composition in the urban atmosphere is highly complex and strongly influenced by vehicular emissions which vary according to the make-up of the vehicle fleet. Normalized test measurements do not necessarily reflect real-world emission profiles and road tunnels are therefore ideal locations to characterise realistic traffic particle emissions with minimal interference from other particle sources and from atmospheric aging processes affecting their composition. In the current study, the composition of fine particles (diameter ≤2.5 µm) at an urban background site (Elms Road Observatory Site) and a road tunnel (Queensway) in Birmingham, UK, were analysed with direct infusion, nano-electrospray ionisation ultrahigh resolution mass spectrometry (UHRMS). The overall particle composition at these two sites is compared with an industrial harbour site in Cork, Ireland, with special emphasis on oxidised mono-aromatics, polycyclic aromatic hydrocarbons (PAHs) and nitro-aromatics. Different classification criteria, such as double bond equivalents, aromaticity index and aromaticity equivalent are used and compared to assess the fraction of aromatic components in the approximately one thousand oxidized organic compounds at the different sampling locations.

15.
J Phys Chem A ; 114(46): 12237-43, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-21028770

ABSTRACT

We present here a study of the phase behavior of mixed component NaNO(3)-Na(2)SO(4) (SNS) droplets with NaNO(3) to Na(2)SO(4) molar ratios of 1:1, 3:1, and 10:1, comparing observations with thermodynamic predictions. Measurements are made by Fourier transform infrared attenuated total reflection and micro-Raman spectroscopy for SNS droplets deposited on ZnSe and quartz substrates, respectively. The conventional deliquescence/efflorescence hysteresis in phase behavior is observed. On drying, heterogeneous crystallization leads to phase behavior that is consistent with bulk solution thermodynamics, with the formation of the mixed salt NaNO(3)·Na(2)SO(4)·H(2)O, Na(2)SO(4) (s), and NaNO(3) (s) all observed to form at relative humidities that coincide with predictions by the aerosol inorganics model. However, conditioning of the droplet at high relative humidity prior to drying is observed to lead to quantitative differences between the fractions of different salts formed. When substrate effects do not influence the crystallization process, supersaturated solutions are formed, and this leads to the observation of contact ion pairs. Such measurements of the phase behavior of mixed component droplets are important for testing the reliability of thermodynamic models.

16.
J Phys Chem A ; 114(37): 10156-65, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20799753

ABSTRACT

The vapor pressures of two dicarboxylic acids, malonic acid and glutaric acid, are determined by the measurement of the evaporation rate of the dicarboxylic acids from single levitated particles. Two laboratory methods were used to isolate single particles, an electrodynamic balance and optical tweezers (glutaric acid only). The declining sizes of individual aerosol particles over time were followed using elastic Mie scattering or cavity enhanced Raman scattering. Experiments were conducted over the temperature range of 280-304 K and a range of relative humidities. The subcooled liquid vapor pressures of malonic and glutaric acid at 298.15 K were found to be 6.7(-1.2)(+2.6) x 10(-4) and 11.2(-4.7)(+9.6) x 10(-4) Pa, respectively, and the standard enthalpies of vaporization were respectively 141.9 ± 19.9 and 100.8 ± 23.9 kJ mol(-1). The vapor pressures of both glutaric acid and malonic acid in single particles composed of mixed inorganic/organic composition were found to be independent of salt concentration within the uncertainty of the measurements. Results are compared with previous laboratory determinations and theoretical predictions.


Subject(s)
Glutarates/chemistry , Malonates/chemistry , Sodium Chloride/chemistry , Vapor Pressure , Aerosols/chemistry , Particle Size , Spectrum Analysis, Raman
17.
J Phys Chem A ; 114(25): 6795-802, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20518517

ABSTRACT

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) measurements were carried out on the 1-propanol-water (abbreviated as 1PA-W) mixtures over the entire 1-propanol molar fraction range at 298 K. The two bands at approximately 1053 and approximately 1068 cm(-1), assigned to the vibrational modes of the gauche (v(C-C-C-O-G)) and the trans (v(C-C-C-O-T)) conformational isomers, respectively, which both include C-O and C-C stretching motions, were used to monitor the structural changes of the mixtures. When the water to 1-propanol molar ratio (WPR) is smaller than 0.2, the absorbance ratio of the two bands (A(vC-C-C-O-G)/A(vC-C-C-O-T)) remains constant at 1.42, characteristic of the existence of the 1-propanol aggregate chains, hydrogen-bonded by the O-H groups of 1-propanol in gauche conformations. When increasing the WPR from 0.2 to 20, there is an abrupt decrease in the absorbance ratio (A(vC-C-C-O-G)/A(vC-C-C-O-T)) from 1.42 to 1.01, corresponding to penetration of water molecules into the gauche-aggregate chains. The penetrated water molecules disrupt the 1PA chains and transform these gauche-aggregate 1PA chains to trans-aggregate chains, which are 1PA dimers of trans-conformation. The structural change induces complicated spectroscopic changes, including the red shifts of the series of bands 1016, 1053, and 1098 cm(-1) and blue shifts of the bands 2877, 2937, and 2961 cm(-1). With further increase of WPR up to 100, the absorbance ratio of A(vC-C-C-O-G)/A(vC-C-C-O-T) increases from 0.98 to 1.07, indicating a transformation of partial 1PA dimers to single molecules with gauche-conformation in the water hydrogen-bonding network. Together with results from quantum calculations at the B3L YP/6-31G (d, p) level, and two-dimensional infrared correlation and excess spectroscopy analysis, the structural evolution of water and 1PA molecules in 1PA-W mixtures has been inferred.


Subject(s)
1-Propanol/chemistry , Molecular Conformation , Spectroscopy, Fourier Transform Infrared/methods , Water/chemistry , Hydrogen Bonding , Models, Molecular , Quantum Theory , Solvents/chemistry , Temperature , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...