Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Biomolecules ; 13(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37627279

ABSTRACT

Failure to properly form bone or integrate surgical implants can lead to morbidity and additional surgical interventions in a significant proportion of orthopedic surgeries. While the role of skeletal stem cells (SSCs) in bone formation and repair is well-established, very little is known about the factors that regulate the downstream Bone, Cartilage, Stromal, Progenitors (BCSPs). BCSPs, as transit amplifying progenitor cells, undergo multiple mitotic divisions to expand the pool of lineage committed progenitors allowing stem cells to preserve their self-renewal and stemness. Del1 is a protein widely expressed in the skeletal system, but its deletion led to minimal phenotype changes in the uninjured mouse. In this paper, we demonstrate that Del1 is a key regulator of BCSP expansion following injury. In Del1 knockout mice, there is a significant reduction in the number of BCSPs which leads to a smaller callus and decreased bone formation compared with wildtype (WT) littermates. Del1 serves to promote BCSP proliferation and prevent apoptosis in vivo and in vitro. Moreover, exogenous Del1 promotes proliferation of aged human BCSPs. Our results highlight the potential of Del1 as a therapeutic target for improving bone formation and implant success. Del1 injections may improve the success of orthopedic surgeries and fracture healing by enhancing the proliferation and survival of BCSPs, which are crucial for generating new bone tissue during the process of bone formation and repair.


Subject(s)
Bone and Bones , Osteogenesis , Humans , Animals , Mice , Aged , Fracture Healing , Intercellular Signaling Peptides and Proteins , Apoptosis , Mice, Knockout
2.
Adv Healthc Mater ; 12(1): e2202147, 2023 01.
Article in English | MEDLINE | ID: mdl-36239185

ABSTRACT

Glioblastoma multiforme (GBM) is the most prevalent and aggressive brain tumor in adults. Hydrogels have been employed as 3D in vitro culture models to elucidate how matrix cues such as stiffness and degradation drive GBM progression and drug responses. Recently, viscoelasticity has been identified as an important niche cue in regulating stem cell differentiation and morphogenesis in 3D. Brain is a viscoelastic tissue, yet how viscoelasticity modulates GBM fate and drug response remains largely unknown. Using dynamic hydrazone crosslinking chemistry, a poly(ethylene-glycol)-based hydrogel system with brain-mimicking stiffness and tunable stress relaxation is reported to interrogate the role of viscoelasticity on GBM fates in 3D. The hydrogel design allows tuning stress relaxation without changing stiffness, biochemical ligand density, or diffusion. The results reveal that increasing stress relaxation promotes invasive GBM behavior, such as cell spreading, migration, and GBM stem-like cell marker expression. Furthermore, increasing stress relaxation enhances GBM proliferation and drug sensitivity. Stress-relaxation induced changes on GBM fates and drug response are found to be mediated through the cytoskeleton and transient receptor potential vanilloid-type 4. These results highlight the importance of incorporating viscoelasticity into 3D in vitro GBM models and provide novel insights into how viscoelasticity modulates GBM cell fates.


Subject(s)
Glioblastoma , Humans , Glioblastoma/pathology , Brain/pathology , Hydrogels/pharmacology , Ethylenes , Glycols
3.
Nat Commun ; 13(1): 6491, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36310174

ABSTRACT

Sexually dimorphic tissues are formed by cells that are regulated by sex hormones. While a number of systemic hormones and transcription factors are known to regulate proliferation and differentiation of osteoblasts and osteoclasts, the mechanisms that determine sexually dimorphic differences in bone regeneration are unclear. To explore how sex hormones regulate bone regeneration, we compared bone fracture repair between adult male and female mice. We found that skeletal stem cell (SSC) mediated regeneration in female mice is dependent on estrogen signaling but SSCs from male mice do not exhibit similar estrogen responsiveness. Mechanistically, we found that estrogen acts directly on the SSC lineage in mice and humans by up-regulating multiple skeletogenic pathways and is necessary for the stem cell's ability to self- renew and differentiate. Our results also suggest a clinically applicable strategy to accelerate bone healing using localized estrogen hormone therapy.


Subject(s)
Osteoblasts , Stem Cells , Humans , Male , Female , Mice , Animals , Osteoblasts/metabolism , Cell Differentiation , Osteoclasts , Estrogens/pharmacology , Estrogens/metabolism
4.
Tissue Eng Part A ; 28(15-16): 712-723, 2022 08.
Article in English | MEDLINE | ID: mdl-35229651

ABSTRACT

Injuries of the bone-to-tendon interface, such as rotator cuff and anterior cruciate ligament tears, are prevalent musculoskeletal injuries, yet effective methods for repair remain elusive. Tissue engineering approaches that use cells and biomaterials offer a promising potential solution for engineering the bone-tendon interface, but previous strategies require seeding multiple cell types and use of multiphasic scaffolds to achieve zonal-specific tissue phenotype. Furthermore, mimicking the aligned tissue morphology present in native bone-tendon interface in three-dimensional (3D) remains challenging. To facilitate clinical translation, engineering bone-tendon interface using a single cell source and one continuous scaffold with alignment cues would be more attractive but has not been achieved before. To address these unmet needs, in this study, we develop an aligned gelatin microribbon (µRB) hydrogel scaffold with hydroxyapatite nanoparticle (HA-np) gradient for guiding zonal-specific differentiation of human mesenchymal stem cell (hMSC) to mimic the bone-tendon interface. We demonstrate that aligned µRBs led to cell alignment in 3D, and HA gradient induced zonal-specific differentiation of mesenchymal stem cells that resemble the transition at the bone-tendon interface. Short chondrogenic priming before exposure to osteogenic factors further enhanced the mimicry of bone-cartilage-tendon transition with significantly improved tensile moduli of the resulting tissues. In summary, aligned gelatin µRBs with HA gradient coupled with optimized soluble factors may offer a promising strategy for engineering bone-tendon interface using a single cell source. Impact statement Our 3D macroporous microribbon hydrogel platform with alignment cues zonally integrated with hydroxyapatite nanoparticles enables differentiation across the bone-tendon interface within a continuous scaffold. While most interfacial scaffolds heretofore rely on composites and multilayer approaches, we present a continuous scaffold utilizing a single cell source. The synergy of niche cues with human mesenchymal stem cell (hMSC) culture leads to an over 45-fold enhancement in tensile modulus in culture. We further demonstrate that priming hMSCs towards the chondrogenic lineage can enhance the differential osteogenesis. Relying on a single cell source could enhance zone integration and scaffold integrity, along with practical benefits.


Subject(s)
Durapatite , Gelatin , Cell Differentiation , Durapatite/pharmacology , Gelatin/pharmacology , Humans , Hydrogels/pharmacology , Tendons , Tissue Engineering/methods , Tissue Scaffolds
5.
Nature ; 597(7875): 256-262, 2021 09.
Article in English | MEDLINE | ID: mdl-34381212

ABSTRACT

Loss of skeletal integrity during ageing and disease is associated with an imbalance in the opposing actions of osteoblasts and osteoclasts1. Here we show that intrinsic ageing of skeletal stem cells (SSCs)2 in mice alters signalling in the bone marrow niche and skews the differentiation of bone and blood lineages, leading to fragile bones that regenerate poorly. Functionally, aged SSCs have a decreased bone- and cartilage-forming potential but produce more stromal lineages that express high levels of pro-inflammatory and pro-resorptive cytokines. Single-cell RNA-sequencing studies link the functional loss to a diminished transcriptomic diversity of SSCs in aged mice, which thereby contributes to the transformation of the bone marrow niche. Exposure to a youthful circulation through heterochronic parabiosis or systemic reconstitution with young haematopoietic stem cells did not reverse the diminished osteochondrogenic activity of aged SSCs, or improve bone mass or skeletal healing parameters in aged mice. Conversely, the aged SSC lineage promoted osteoclastic activity and myeloid skewing by haematopoietic stem and progenitor cells, suggesting that the ageing of SSCs is a driver of haematopoietic ageing. Deficient bone regeneration in aged mice could only be returned to youthful levels by applying a combinatorial treatment of BMP2 and a CSF1 antagonist locally to fractures, which reactivated aged SSCs and simultaneously ablated the inflammatory, pro-osteoclastic milieu. Our findings provide mechanistic insights into the complex, multifactorial mechanisms that underlie skeletal ageing and offer prospects for rejuvenating the aged skeletal system.


Subject(s)
Aging/pathology , Bone and Bones/pathology , Cellular Senescence , Inflammation/pathology , Stem Cell Niche , Stem Cells/pathology , Animals , Bone Morphogenetic Protein 2/metabolism , Bone Regeneration , Cell Lineage , Female , Fracture Healing , Hematopoiesis , Macrophage Colony-Stimulating Factor/metabolism , Male , Mice , Myeloid Cells/cytology , Osteoclasts/cytology , Rejuvenation
6.
Tissue Eng Part A ; 27(13-14): 929-939, 2021 07.
Article in English | MEDLINE | ID: mdl-32940136

ABSTRACT

Hydrogels have been widely used for cell delivery to enhance cell-based therapies for cartilage tissue regeneration. To better support cartilage deposition, it is imperative to determine hydrogel formulation with physical and biochemical cues that are optimized for different cell populations. Previous attempts to identify optimized hydrogels rely mostly on testing hydrogel formulations with discrete properties, which are time-consuming and require large amounts of cells and materials. Gradient hydrogels encompass a range of continuous changes in niche properties, therefore offering a promising solution for screening a wide range of cell-niche interactions using less materials and time. However, harnessing gradient hydrogels to assess how matrix stiffness modulates cartilage formation by different cell types in vivo have never been investigated before. The goal of this study is to fabricate gradient hydrogels for screening the effects of varying hydrogel stiffness on cartilage formation by mesenchymal stem cells (MSCs) and chondrocytes, respectively, the two most commonly used cell populations for cartilage regeneration. We fabricated stiffness gradient hydrogels with tunable dimensions that support homogeneous cell encapsulation. Using gradient hydrogels with tunable stiffness range, we found MSCs and chondrocytes exhibit opposite trend in cartilage deposition in response to stiffness changes in vitro. Specifically, MSCs require soft hydrogels with Young's modulus less than 5 kPa to support faster cartilage deposition, as shown by type II collagen and sulfated glycosaminoglycan staining. In contrast, chondrocytes produce cartilage more effectively in stiffer matrix (>20 kPa). We chose optimal ranges of stiffness for each cell population for further testing in vivo using a mouse subcutaneous model. Our results further validated that soft matrix (Young's modulus <5 kPa) is better in supporting MSC-based cartilage deposition in three-dimensional, whereas stiffer matrix (Young's modulus >20 kPa) is more desirable for supporting chondrocyte-based cartilage deposition. Our results show the importance of optimizing niche cues in a cell-type-specific manner and validate the potential of using gradient hydrogels for optimizing niche cues to support cartilage regeneration in vitro and in vivo. Impact statement The present study validates the utility of gradient hydrogels for determining optimal hydrogel stiffness for supporting cartilage regeneration using both chondrocytes and stem cells. We demonstrate that such gradient hydrogels can be used for fast optimizing matrix stiffness for specific cell type to support optimal cartilage regeneration. To our knowledge, this is the first demonstration of applying gradient hydrogels for assessing optimal niche cues that support tissue regeneration in vivo and may be used for assessing optimal niche cues for different cell types to regeneration of different tissues.


Subject(s)
Cues , Hydrogels , Cartilage , Chondrocytes , Chondrogenesis , Hydrogels/pharmacology
7.
Nat Med ; 26(10): 1583-1592, 2020 10.
Article in English | MEDLINE | ID: mdl-32807933

ABSTRACT

Osteoarthritis (OA) is a degenerative disease resulting in irreversible, progressive destruction of articular cartilage1. The etiology of OA is complex and involves a variety of factors, including genetic predisposition, acute injury and chronic inflammation2-4. Here we investigate the ability of resident skeletal stem-cell (SSC) populations to regenerate cartilage in relation to age, a possible contributor to the development of osteoarthritis5-7. We demonstrate that aging is associated with progressive loss of SSCs and diminished chondrogenesis in the joints of both mice and humans. However, a local expansion of SSCs could still be triggered in the chondral surface of adult limb joints in mice by stimulating a regenerative response using microfracture (MF) surgery. Although MF-activated SSCs tended to form fibrous tissues, localized co-delivery of BMP2 and soluble VEGFR1 (sVEGFR1), a VEGF receptor antagonist, in a hydrogel skewed differentiation of MF-activated SSCs toward articular cartilage. These data indicate that following MF, a resident stem-cell population can be induced to generate cartilage for treatment of localized chondral disease in OA.


Subject(s)
Cartilage, Articular/physiology , Regeneration/physiology , Stem Cells/physiology , Adult , Animals , Cartilage, Articular/cytology , Cell Differentiation , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/physiology , Chondrogenesis/physiology , Fetal Tissue Transplantation , Fetus/cytology , Heterografts , Humans , Male , Mesenchymal Stem Cells/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Stem Cells/cytology , Tissue Engineering/methods
8.
Theranostics ; 10(13): 6035-6047, 2020.
Article in English | MEDLINE | ID: mdl-32483436

ABSTRACT

Rationale: Injectable matrices are highly desirable for stem cell delivery. Previous research has highlighted the benefit of scaffold macroporosity in enhancing stem cell survival and bone regeneration in vivo. However, there remains a lack of injectable and in situ crosslinkable macroporous matrices for stem cell delivery to achieve fast bone regeneration in immunocompetent animal model. The goal of this study is to develop an injectable gelatin-based µRB hydrogel supporting direct cell encapsulation that is available in clinics as macroporous matrices to enhance adipose-derived stromal cell (ASC) survival, engraftment and accelerate bone formation in craniofacial defect mouse. Methods: Injectable and in situ crosslinkable gelatin microribbon (µRB)-based macroporous hydrogels were developed by wet-spinning. Injectability was optimized by varying concentration of glutaraldehyde for intracrosslinking of µRB shape, and fibrinogen coating. The efficacy of injectable µRBs to support ASCs delivery and bone regeneration were further assessed in vivo using an immunocompetent mouse cranial defect model. ASCs survival was evaluated by bioluminescent imaging and bone regeneration was assessed by micro-CT. The degradation and biocompatibility were determined by histological analysis. Results: We first optimized injectability by varying concentration of glutaraldehyde used to fix gelatin µRBs. The injectable µRB formulation were subsequently coated with fibrinogen, which allows in situ crosslinking by thrombin. Fluorescence imaging and histology showed majority of µRBs degraded by the end of 3 weeks. Injectable µRBs supported comparable level of ASC proliferation and bone regeneration as implantable prefabricated µRB controls. Adding low dosage of BMP2 (100 ng per scaffold) with ASCs substantially accelerated the speed of mineralized bone regeneration, with 90% of the bone defect refilled by week 8. Immunostaining showed M1 (pro-inflammatory) macrophages were recruited to the defect at day 3, and was replaced by M2 (anti-inflammatory) macrophages by week 2. Adding µRBs or BMP2 did not alter macrophage response. Injectable µRBs supported vascularization, and BMP-2 further enhanced vascularization. Conclusions: Our results demonstrated that µRB-based scaffolds enhanced ASC survival and accelerated bone regeneration after injection into critical sized cranial defect mouse. Such injectable µRB-based scaffold can provide a versatile biomaterial for delivering various stem cell types and enhancing tissue regeneration.


Subject(s)
Bone Regeneration/drug effects , Gelatin/administration & dosage , Hydrogels/administration & dosage , Stem Cells/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Biocompatible Materials/administration & dosage , Bone Morphogenetic Protein 2/metabolism , Bone and Bones/drug effects , Bone and Bones/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, Transgenic , Osteogenesis/drug effects , Recombinant Proteins/metabolism , Stem Cells/metabolism , Tissue Engineering/methods , Tissue Scaffolds , Transforming Growth Factor beta/metabolism
9.
J Biomed Mater Res A ; 108(11): 2240-2250, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32363683

ABSTRACT

Mesenchymal stem cell (MSC)-based therapy is a promising strategy for bone repair. Furthermore, the innate immune system, and specifically macrophages, plays a crucial role in the differentiation and activation of MSCs. The anti-inflammatory cytokine Interleukin-4 (IL-4) converts pro-inflammatory M1 macrophages into a tissue regenerative M2 phenotype, which enhances MSC differentiation and function. We developed lentivirus-transduced IL-4 overexpressing MSCs (IL-4 MSCs) that continuously produce IL-4 and polarize macrophages toward an M2 phenotype. In the current study, we investigated the potential of IL-4 MSCs delivered using a macroporous gelatin-based microribbon (µRB) scaffold for healing of critical-size long bone defects in Mice. IL-4 MSCs within µRBs enhanced M2 marker expression without inhibiting M1 marker expression in the early phase, and increased macrophage migration into the scaffold. Six weeks after establishing the bone defect, IL-4 MSCs within µRBs enhanced bone formation and helped bridge the long bone defect. IL-4 MSCs delivered using macroporous µRB scaffold is potentially a valuable strategy for the treatment of critical-size long bone defects.


Subject(s)
Gelatin/chemistry , Interleukin-4/genetics , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Tissue Scaffolds/chemistry , Animals , Bone and Bones/injuries , Cells, Cultured , Hydrogels/chemistry , Male , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Mice, Inbred BALB C , Osteogenesis , Transduction, Genetic , Up-Regulation , Wound Healing
10.
ACS Biomater Sci Eng ; 6(7): 4166-4178, 2020 07 13.
Article in English | MEDLINE | ID: mdl-33463346

ABSTRACT

Hydrogels are widely used matrices for mesenchymal stem cell (MSC)-based cartilage regeneration but often result in slow cartilage deposition with inferior mechanical strength. We recently reported a gelatin-based microribbon (µRB) scaffold, which contains macroporosity and substantially enhances the speed of cartilage formation by MSCs in 3D. However, our previous method cannot be used to fabricate different polymers into µRBs, and the effects of varying µRB compositions on MSC cartilage regeneration in 3D remain unknown. Here, we report a method that allows fabricating different polymers [gelatin, chondroitin sulfate, hyaluronic acid, and polyethylene glycol (PEG)] into µRB structures, which can be mixed in any ratio and cross-linked into 3D scaffolds in a modular manner. Mixing glycosaminoglycan µRBs with gelatin or PEG µRBs induced great synergy, resulting in fast cartilage deposition. After only 3 weeks of culture, leading mixed µRB composition reached high compressive strength on par with native cartilage. Such synergy can be recapitulated via exchange of soluble factors secreted by MSCs seeded in different µRB compositions in a dose-dependent manner. Tuning the ratio of mixed µRB compositions allowed further optimization of the quantity and speed of cartilage regeneration by MSCs. Together, our results validate mixed µRB compositions as a novel biomaterial tool for inducing synergy and accelerating MSC-based cartilage regeneration with biomimetic mechanical properties through paracrine signal exchange.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Cartilage , Paracrine Communication , Regeneration
11.
Biomaterials ; 228: 119579, 2020 01.
Article in English | MEDLINE | ID: mdl-31698227

ABSTRACT

Juvenile chondrocytes are robust in regenerating articular cartilage, but their clinical application is hindered by donor scarcity. Stem cells offer an abundant autologous cell source but are limited by slow cartilage deposition with poor mechanical properties. Using 3D co-culture models, mixing stem cells and chondrocytes can induce synergistic cartilage regeneration. However, the resulting cartilage tissue still suffers from poor mechanical properties after prolonged culture. Here we report a microribbon/hydrogel composite scaffold that supports synergistic interactions using co-culture of adipose-derived stem cells (ADSCs) and neonatal chondrocytes (NChons). The composite scaffold is comprised of a macroporous, gelatin microribbon (µRB) scaffolds filled with degradable nanoporous chondroitin sulfate (CS) hydrogel. We identified an optimal CS concentration (6%) that best supported co-culture synergy in vitro. Furthermore, 7 days of TGF-ß3 exposure was sufficient to induce catalyzed cartilage formation. When implanted in vivo, µRB/CS composite scaffold supported over a 40-fold increase in compressive moduli of cartilage produced by mixed ADSCs/NChons to ~330 kPa, which surpassed even the quality of cartilage produced by 100% NChons. Together, these results validate µRB/CS composite as a promising scaffold for cartilage regeneration using mixed populations of stem cells and chondrocytes.


Subject(s)
Cartilage, Articular , Chondrocytes , Chondrogenesis , Humans , Hydrogels , Infant, Newborn , Regeneration , Stem Cells , Tissue Engineering , Tissue Scaffolds
12.
APL Bioeng ; 3(3): 036108, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31592041

ABSTRACT

Type I collagen is the most abundant extracellular matrix protein in the human body and is commonly used as a biochemical ligand for hydrogel substrates to support cell adhesion in mechanotransduction studies. Previous protocols for conjugating collagen I have used different solvents; yet, how varying solvent pH and composition impacts the efficiency and distribution of these collagen I coatings remains unknown. Here, we examine the effect of varying solvent pH and type on the efficiency and distribution of collagen I coatings on polyacrylamide hydrogels. We further evaluate the effects of varying solvent on mechanotransduction of human mesenchymal stem cells (MSCs) by characterizing cell spreading and localization of Yes-Associated Protein (YAP), a key transcriptional regulator of mechanotransduction. Increasing solvent pH to 5.2 and above increased the heterogeneity of coating with collagen bundle formation. Collagen I coating highly depends on the solvent type, with acetic acid leading to the highest conjugation efficiency and most homogeneous coating. Compared to HEPES or phosphate-buffered saline buffer, acetic acid-dissolved collagen I coatings substantially enhance MSC adhesion and spreading on both glass and polyacrylamide hydrogel substrates. When acetic acid was used for collagen coatings, even the low collagen concentration (1 µg/ml) induced robust MSC spreading and nuclear YAP localization on both soft (3 kPa) and stiff (38 kPa) substrates. Depending on the solvent type, stiffness-dependent nuclear YAP translocation occurs at a different collagen concentration. Together, the results from this study validate the solvent type as an important parameter to consider when using collagen I as the biochemical ligand to support cell adhesion.

13.
Acta Biomater ; 96: 310-320, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31255664

ABSTRACT

Extracellular matrix (ECM) is comprised of different types of proteins, which change in composition and ratios during morphogenesis and disease progression. ECM proteins provide cell adhesion and impart mechanical cues to the cells. Increasing substrate stiffness has been shown to induce Yes-associated protein (YAP) translocation from the cytoplasm to the nucleus, yet these mechanistic studies used fibronectin only as the biochemical cue. How varying the types of ECM modulates mechanotransduction of stem cells remains largely unknown. Using polyacrylamide hydrogels with tunable stiffness as substrates, here we conjugated four major ECM proteins commonly used for cell adhesion: fibronectin, collagen I, collagen IV and laminin, and assessed the effects of varying ECM type and density on YAP translocation in human mesenchymal stem cells (hMSCs). For all four ECM types, increasing ECM ligand density alone can induce YAP nuclear translocation without changing substrate stiffness. The ligand threshold for such biochemical ligand-induced YAP translocation differs across ECM types. While stiffness-dependent YAP translocation can be induced by all four ECM types, each ECM requires a different optimized ligand density for this to occur. Using antibody blocking, we further identified integrin subunits specifically involved in mechanotransduction of different ECM types. Finally, we demonstrated that altering ECM type further modulates hMSC osteogenesis without changing substrate stiffness. These findings highlight the important role of ECM type in modulating mechanotransduction and differentiation of stem cells, and call for future mechanistic studies to further elucidate the role of changes in ECM compositions in mediating mechanotransduction during morphogenesis and disease progression. STATEMENT OF SIGNIFICANCE: Our study addresses a critical gap of knowledge in mechanobiology. Increasing substrate stiffness has been shown to induce nuclear YAP translocation, yet only on fibronectin-coated substrates. However, extracellular matrix (ECM) is comprised of different protein types. How varying the type of ECM modulates stem cell mechanotransduction remains largely unknown. We here reveal that the choice of ECM type can directly modulate stem cell mechanotransduction, filling this critical gap. This work has broad impacts in mechanobiology and biomaterials, as it provides the first evidence that varying ECM type can impact YAP translocation independent of substrate stiffness, opening doors for a more rational biomaterials design tuning ECM properties to control cell fate for promoting normal development and for preventing disease progression.


Subject(s)
Extracellular Matrix/metabolism , Mechanotransduction, Cellular , Mesenchymal Stem Cells/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Extracellular Matrix Proteins/metabolism , Humans , Hydrogels/pharmacology , Integrins/metabolism , Ligands , Osteogenesis , Protein Subunits/metabolism , Protein Transport , Transcription Factors/metabolism , YAP-Signaling Proteins
14.
Biomaterials ; 202: 26-34, 2019 05.
Article in English | MEDLINE | ID: mdl-30826537

ABSTRACT

Polyacrylamide hydrogels have been widely used in stem cell mechanotransduction studies. Conventional conjugation methods of biochemical cues to polyacrylamide hydrogels suffer from low conjugation efficiency, which leads to poor attachment of human pluripotent stem cells (hPSCs) on soft substrates. In addition, while it is well-established that stiffness-dependent regulation of stem cell fate requires cytoskeletal tension, and is mediated through nuclear translocation of transcription regulator, Yes-associated protein (YAP), the role of biochemical cues in stiffness-dependent YAP regulation remains largely unknown. Here we report a method that enhances the conjugation efficiency of biochemical cues on polyacrylamide hydrogels compared to conventional methods. This modified method enables robust hPSC attachment, proliferation and maintenance of pluripotency across varying substrate stiffness (3 kPa-38 kPa). Using this hydrogel platform, we demonstrate that varying the types of biochemical cues (Matrigel, laminin, GAG-peptide) or density of Matrigel can alter stiffness-dependent YAP localization in hPSCs. In particular, we show that stiffness-dependent YAP localization is overridden at low or high density of Matrigel. Furthermore, human mesenchymal stem cells display stiffness-dependent YAP localization only at intermediate fibronectin density. The hydrogel platform with enhanced conjugation efficiency of biochemical cues provides a powerful tool for uncovering the role of biochemical cues in regulating mechanotransduction of various stem cell types.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Stem Cells/metabolism , Transcription Factors/metabolism , Acrylic Resins/chemistry , Amines/chemistry , Cell Line , Cell Proliferation/physiology , Humans , Immunohistochemistry , Mechanotransduction, Cellular/physiology , YAP-Signaling Proteins
15.
ACS Appl Mater Interfaces ; 11(9): 8849-8857, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30789697

ABSTRACT

Different tissue types are characterized by varying stiffness and biochemical ligands. Increasing substrate stiffness has been shown to trigger Yes-associated protein (YAP) translocation from the cytoplasm to the nucleus, yet the role of ligand density in modulating mechanotransduction and stem cell fate remains largely unexplored. Using polyacrylamide hydrogels coated with fibronectin as a model platform, we showed that stiffness-induced YAP translocation occurs only at intermediate ligand densities. At low or high ligand densities, YAP localization is dominated by ligand density independent of substrate stiffness. We further showed that ligand density-induced YAP translocation requires cytoskeleton tension and αVß3-integrin binding. Finally, we demonstrate that increasing ligand density alone can enhance osteogenic differentiation regardless of matrix stiffness. Together, the findings from the present study establish ligand density as an important parameter for modulating stem cell mechanotransduction and differentiation, which is mediated by integrin clustering, focal adhesion, and cytoskeletal tension.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytoskeleton/metabolism , Integrin alphaVbeta3/metabolism , Ligands , Phosphoproteins/metabolism , Acrylic Resins/chemistry , Cell Differentiation , Cell Line , Fibronectins/chemistry , Humans , Hydrogels/chemistry , Mechanotransduction, Cellular , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Microscopy, Confocal , Osteogenesis , Protein Binding , Protein Transport , Transcription Factors , YAP-Signaling Proteins
16.
Adv Healthc Mater ; 7(7): e1701065, 2018 04.
Article in English | MEDLINE | ID: mdl-29280328

ABSTRACT

Biomaterials are key factors in regenerative medicine. Matrices used for cell delivery are especially important, as they provide support to transplanted cells that is essential for promoting cell survival, retention, and desirable phenotypes. Injectable matrices have become promising and attractive due to their minimum invasiveness and ease of use. Conventional injectable matrices mostly use hydrogel precursor solutions that form solid, cell-laden hydrogel scaffolds in situ. However, these materials are associated with challenges in biocompatibility, shear-induced cell death, lack of control over cellular phenotype, lack of macroporosity and remodeling, and relatively weak mechanical strength. This Progress Report provides a brief overview of recent progress in developing injectable matrices to overcome the limitations of conventional in situ hydrogels. Biocompatible chemistry and shear-thinning hydrogels have been introduced to promote cell survival and retention. Emerging investigations of the effects of matrix properties on cellular function in 3D provide important guidelines for promoting desirable cellular phenotypes. Moreover, several novel approaches are combining injectability with macroporosity to achieve macroporous, injectable matrices for cell delivery.


Subject(s)
Biocompatible Materials , Cell Transplantation , Cells, Immobilized/transplantation , Hydrogels , Regeneration , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Humans , Hydrogels/chemistry , Hydrogels/therapeutic use , Regenerative Medicine
17.
Tissue Eng Part A ; 24(1-2): 1-10, 2018 01.
Article in English | MEDLINE | ID: mdl-28385124

ABSTRACT

Zonal organization plays an important role in cartilage structure and function, whereas most tissue-engineering strategies developed to date have only allowed the regeneration of cartilage with homogeneous biochemical and mechanical cues. To better restore tissue structure and function, there is a strong need to engineer materials with biomimetic gradient niche cues that recapitulate native tissue organization. To address this critical unmet need, in this study, we report a method for rapid formation of tissue-scale gradient hydrogels as a three-dimensional (3D) cell niche with tunable biochemical and physical properties. When encapsulated in stiffness gradient hydrogels, both chondrocytes and mesenchymal stem cells demonstrated zone-specific response and extracellular deposition that mimics zonal organization of articular cartilage. Blocking cell mechanosensing using blebbistatin abolished the zonal response of chondrocytes in 3D hydrogels with a stiffness gradient. Such tissue-scale gradient hydrogels can provide a 3D artificial cell niche to enable tissue engineering of various tissue types with zonal organizations or tissue interfaces.


Subject(s)
Chondrocytes/cytology , Hydrogels/chemistry , Tissue Engineering/methods , Animals , Biomimetics , Cattle , Cells, Cultured
18.
Biomaterials ; 131: 111-120, 2017 07.
Article in English | MEDLINE | ID: mdl-28384492

ABSTRACT

Engineering 3D human cardiac tissues is of great importance for therapeutic and pharmaceutical applications. As cardiac tissue substitutes, extracellular matrix-derived hydrogels have been widely explored. However, they exhibit premature degradation and their stiffness is often orders of magnitude lower than that of native cardiac tissue. There are no reports on establishing interconnected cardiomyocytes in 3D hydrogels at physiologically-relevant cell density and matrix stiffness. Here we bioengineer human cardiac microtissues by encapsulating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in chemically-crosslinked gelatin hydrogels (1.25 × 108/mL) with tunable stiffness and degradation. In comparison to the cells in high stiffness (16 kPa)/slow degrading hydrogels, hiPSC-CMs in low stiffness (2 kPa)/fast degrading and intermediate stiffness (9 kPa)/intermediate degrading hydrogels exhibit increased intercellular network formation, α-actinin and connexin-43 expression, and contraction velocity. Only the 9 kPa microtissues exhibit organized sarcomeric structure and significantly increased contractile stress. This demonstrates that muscle-mimicking stiffness together with robust cellular interconnection contributes to enhancement in sarcomeric organization and contractile function of the engineered cardiac tissue. This study highlights the importance of intercellular connectivity, physiologically-relevant cell density, and matrix stiffness to best support 3D cardiac tissue engineering.


Subject(s)
Biocompatible Materials/chemistry , Gelatin/chemistry , Hydrogels/chemistry , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Tissue Engineering/methods , Biomechanical Phenomena , Biomimetics/methods , Cell Communication , Cell Differentiation , Cells, Cultured , Cells, Immobilized/chemistry , Cross-Linking Reagents/chemistry , Elasticity , Humans
19.
Radiology ; 284(2): 495-507, 2017 08.
Article in English | MEDLINE | ID: mdl-28128708

ABSTRACT

Purpose To determine whether endogenous labeling of macrophages with clinically applicable nanoparticles enables noninvasive detection of innate immune responses to stem cell transplants with magnetic resonance (MR) imaging. Materials and Methods Work with human stem cells was approved by the institutional review board and the stem cell research oversight committee, and animal experiments were approved by the administrative panel on laboratory animal care. Nine immunocompetent Sprague-Dawley rats received intravenous injection of ferumoxytol, and 18 Jax C57BL/6-Tg (Csf1r-EGFP-NGFR/FKBP1A/TNFRSF6) 2Bck/J mice received rhodamine-conjugated ferumoxytol. Then, 48 hours later, immune-matched or mismatched stem cells were implanted into osteochondral defects of the knee joints of experimental rats and calvarial defects of Jax mice. All animals underwent serial MR imaging and intravital microscopy (IVM) up to 4 weeks after surgery. Macrophages of Jax C57BL/6-Tg (Csf1r-EGFP-NGFR/FKBP1A/TNFRSF6) 2Bck/J mice express enhanced green fluorescent protein (GFP), which enables in vivo correlation of ferumoxytol enhancement at MR imaging with macrophage quantities at IVM. All quantitative data were compared between experimental groups by using a mixed linear model and t tests. Results Immune-mismatched stem cell implants demonstrated stronger ferumoxytol enhancement than did matched stem cell implants. At 4 weeks, T2 values of mismatched implants were significantly lower than those of matched implants in osteochondral defects of female rats (mean, 10.72 msec for human stem cells and 11.55 msec for male rat stem cells vs 15.45 msec for sex-matched rat stem cells; P = .02 and P = .04, respectively) and calvarial defects of recipient mice (mean, 21.7 msec vs 27.1 msec, respectively; P = .0444). This corresponded to increased recruitment of enhanced GFP- and rhodamine-ferumoxytol-positive macrophages into stem cell transplants, as visualized with IVM and histopathologic examination. Conclusion Endogenous labeling of macrophages with ferumoxytol enables noninvasive detection of innate immune responses to stem cell transplants with MR imaging. © RSNA, 2017 Online supplemental material is available for this article.


Subject(s)
Graft Rejection/diagnostic imaging , Magnetic Resonance Imaging/methods , Stem Cell Transplantation , Adult , Animals , Disease Models, Animal , Female , Ferrosoferric Oxide/administration & dosage , Humans , Image Interpretation, Computer-Assisted , Mice , Middle Aged , Rats , Rats, Sprague-Dawley
20.
Sci Transl Med ; 9(372)2017 01 11.
Article in English | MEDLINE | ID: mdl-28077677

ABSTRACT

Diabetes mellitus (DM) is a metabolic disease frequently associated with impaired bone healing. Despite its increasing prevalence worldwide, the molecular etiology of DM-linked skeletal complications remains poorly defined. Using advanced stem cell characterization techniques, we analyzed intrinsic and extrinsic determinants of mouse skeletal stem cell (mSSC) function to identify specific mSSC niche-related abnormalities that could impair skeletal repair in diabetic (Db) mice. We discovered that high serum concentrations of tumor necrosis factor-α directly repressed the expression of Indian hedgehog (Ihh) in mSSCs and in their downstream skeletogenic progenitors in Db mice. When hedgehog signaling was inhibited during fracture repair, injury-induced mSSC expansion was suppressed, resulting in impaired healing. We reversed this deficiency by precise delivery of purified Ihh to the fracture site via a specially formulated, slow-release hydrogel. In the presence of exogenous Ihh, the injury-induced expansion and osteogenic potential of mSSCs were restored, culminating in the rescue of Db bone healing. Our results present a feasible strategy for precise treatment of molecular aberrations in stem and progenitor cell populations to correct skeletal manifestations of systemic disease.


Subject(s)
Femoral Fractures/drug therapy , Fracture Healing/drug effects , Hedgehog Proteins/pharmacology , Mesenchymal Stem Cells/cytology , Stem Cell Niche , Animals , Bone and Bones/pathology , Cell Proliferation , Cell Separation , Diabetes Mellitus, Experimental/pathology , Female , Flow Cytometry , Hedgehog Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Osteogenesis , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...