Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 15(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35629551

ABSTRACT

Traditional solid nanoparticle aerogels have been unable to meet the requirements of practical application due to their inherent brittleness and poor infrared shielding performance. Herein, combining vacuum impregnation and high-temperature pyrolysis, a novel micro/nano-composite fibrous aerogel was prepared via in situ synthesis of silicon carbide nanowires (SiC NWS) in mullite fiber (MF) preform. During this process, uniformly distributed SiC NWS in the MF preform serve as an enhancement phase and also act as an infrared shielding agent to reduce radiation heat transfer, which can significantly improve the mechanical properties of the mullite fiber/silicon carbide nanowire composite aerogels (MF/SiC NWS). The fabricated MF/SiC NWS exhibited excellent thermal stability (1400 °C), high compressive strength (~0.47 MPa), and outstanding infrared shielding performance (infrared transmittance reduced by ~70%). These superior properties make them appealing for their potential in practical application as high-temperature thermal insulators.

2.
ACS Appl Mater Interfaces ; 13(19): 22765-22773, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33947180

ABSTRACT

Nanofibrous aerogels constructed by ceramic fiber components (CNFAs) feature lightweight, compressibility, and high-temperature resistance, which are superior to brittle ceramic aerogels assembled from nanoparticles. Up to now, in order to obtain CNFAs with stable framework and multifunctionality such as hydrophobicity and gas absorption, it is necessary to perform binding and surface modification processes, respectively. However, the microstructure as well as properties of CNFAs are deteriorated by the direct addition of binders and modifiers. To tackle these problems, we introduced a unique low-temperature (100 °C) chemical vapor deposition method (LTCVD) to achieve the cross-linking and hydrophobization of Si3N4 CNFA in only one step. More importantly, during the LTCVD process, SiOx coatings and nanowire arrays were in situ formed via vapor-solid (VS) and vapor-liquid-solid (VLS) mechanisms on the surface and intersection of Si3N4 nanofibers, which cemented the aerogel framework, endowed it with hydrophobicity, and improved its oxidation resistance at high temperature. Compared to most of its counterparts, the Si3N4/SiOx CNFA exhibited better mechanical properties, higher capability of oil/water separation (33-76 g·g-1), lower thermal conductivity (0.0157 W/m·K-1), and superior structural stability in a wide temperature range of -196-1200 °C. This work not only presents an excellent Si3N4/SiOx CNFA for the first time but also provides fresh insights for the exquisite preparation strategy of CNFAs.

3.
Materials (Basel) ; 14(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921640

ABSTRACT

In order to improve the mechanical properties of SiO2 aerogels, PHMS/VTES-SiO2 composite aerogels (P/V-SiO2) were prepared. Using vinyltriethoxysilane (VTES) as a coupling agent, the PHMS/VTES complex was prepared by conducting an addition reaction with polyhydromethylsiloxane (PHMS) and VTES and then reacting it with inorganic silica sol to prepare the organic-inorganic composite aerogels. The PHMS/VTES complex forms a coating structure on the aerogel particles, enhancing the network structure of the composite aerogels. The composite aerogels can maintain the high specific surface area and excellent thermal insulation properties, and they have better mechanical properties. We studied the reaction mechanism during preparation and discussed the effects of the organic components on the structure and properties of the composite aerogels. The composite aerogels we prepared have a thermal conductivity of 0.03773 W·m-1·K-1 at room temperature and a compressive strength of 1.87 MPa. The compressive strength is several times greater than that of inorganic SiO2 aerogels. The organic-inorganic composite aerogels have excellent comprehensive properties, which helps to expand the application fields of silicon-based aerogels.

SELECTION OF CITATIONS
SEARCH DETAIL