Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Mediators Inflamm ; 2023: 8387330, 2023.
Article in English | MEDLINE | ID: mdl-37101596

ABSTRACT

Theta- (θ-) defensins are pleiotropic host defense peptides with antimicrobial- and immune-modulating activities. Immune stimulation of cells with lipopolysaccharide (LPS, endotoxin) activates proinflammatory gene expression and cytokine secretion, both of which are attenuated by rhesus theta-defensin-1 (RTD-1) inhibition of NF-κB and MAP kinase pathways. Endotoxin tolerance is a condition that ensues when cells have an extended primary exposure to low levels of LPS, resulting in resistance to a subsequent LPS challenge. Recognition of LPS by Toll-like receptor-4 (TLR4) activates NF-κB, elevating levels of microRNA-146a (miR-146a), which targets IRAK1 and TRAF6 transcripts to reduce their protein levels and inhibits TLR signaling on secondary LPS stimulation. Here, we report that RTD-1 suppressed the expression of miR-146a and stabilized the IRAK1 protein in immune-stimulated, monocytic THP-1 cells. Cells that had primary exposure to LPS became endotoxin-tolerant, as evident from their failure to secrete TNF-α upon secondary endotoxin challenge. However, cells incubated with RTD-1 during the primary LPS stimulation secreted TNF-α after secondary LPS stimulation in an RTD-1 dose-dependent manner. Consistent with this, compared to the control treatment, cells treated with RTD-1 during primary LPS stimulation had increased NF-κB activity after secondary LPS stimulation. These results show that RTD-1 suppresses endotoxin tolerance by inhibiting the NF-κB pathway and demonstrates a novel inflammatory role for RTD-1 that is mediated by the downregulation of miR-146a during the innate immune response.


Subject(s)
MicroRNAs , NF-kappa B , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha , Endotoxin Tolerance , Defensins , Endotoxins , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
2.
Physiol Genomics ; 51(12): 657-667, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31762409

ABSTRACT

Rhesus theta defensin-1 (RTD-1), a macrocyclic immunomodulatory host defense peptide from Old World monkeys, is therapeutic in pristane-induced arthritis (PIA) in rats, a model of rheumatoid arthritis (RA). RNA-sequence (RNA-Seq) analysis was used to interrogate the changes in gene expression in PIA rats, which identified 617 differentially expressed genes (DEGs) in PIA synovial tissue of diseased rats. Upstream regulator analysis showed upregulation of gene expression pathways regulated by TNF, IL1B, IL6, proinflammatory cytokines, and matrix metalloproteases (MMPs) involved in RA. In contrast, ligand-dependent nuclear receptors like the liver X-receptors NR1H2 and NR1H3 and peroxisome proliferator-activated receptor gamma (PPARG) were downregulated in arthritic synovia. Daily RTD-1 treatment of PIA rats for 1-5 days following disease presentation modulated 340 of the 617 disease genes, and synovial gene expression in PIA rats treated 5 days with RTD-1 closely resembled the gene signature of naive synovium. Systemic RTD-1 inhibited proinflammatory upstream regulators such as TNF, IL1, and IL6 and activated antiarthritic ligand-dependent nuclear receptor pathways, including PPARG, NR1H2, and NR1H3, that were suppressed in untreated PIA rats. RTD-1 also inhibited proinflammatory responses in IL-1ß-stimulated human RA fibroblast-like synoviocytes (FLS) in vitro and diminished expression of human orthologs of disease genes that are induced in rat PIA synovium. Thus, the antiarthritic mechanisms of systemic RTD-1 include homeostatic regulation of arthritogenic gene networks in a manner that correlates temporally with clinical resolution of rat PIA.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Fibroblasts/metabolism , Inflammation Mediators/antagonists & inhibitors , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Synovial Membrane/metabolism , Transcriptome/drug effects , alpha-Defensins/pharmacology , alpha-Defensins/therapeutic use , Animals , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/metabolism , Cell Line , Cercopithecidae , Cytokines/genetics , Disease Models, Animal , Female , Humans , Immunosuppressive Agents/pharmacology , RNA-Seq , Rats , Synoviocytes/metabolism , Terpenes/pharmacology , Up-Regulation
3.
Article in English | MEDLINE | ID: mdl-29610196

ABSTRACT

Systemic candidiasis is a growing health care concern that is becoming even more challenging due to the growing frequency of infections caused by multidrug-resistant (MDR) Candida species. Thus, there is an urgent need for new therapeutic approaches to candidiasis, including strategies bioinspired by insights into natural host defense against fungal pathogens. The antifungal properties of θ-defensins, macrocyclic peptides expressed in tissues of Old World monkeys, were investigated against a panel of drug-sensitive and drug-resistant clinical isolates of Candida albicans and non-albicans Candida species. Rhesus θ-defensin 1 (RTD-1), the prototype θ-defensin, was rapidly and potently fungicidal against drug-sensitive and MDR C. albicans strains. Fungal killing occurred by cell permeabilization that was temporally correlated with ATP release and intracellular accumulation of reactive oxygen species (ROS). Killing by RTD-1 was compared with that by histatin 5 (Hst 5), an extensively characterized anticandidal peptide expressed in human saliva. RTD-1 killed C. albicans much more rapidly and at a >200-fold lower concentration than that of Hst 5. Unlike Hst 5, the anticandidal activity of RTD-1 was independent of mitochondrial ATP production. Moreover, RTD-1 was completely resistant to Candida proteases for 2 h under conditions that rapidly and completely degraded Hst 5. MICs and minimum fungicidal concentrations (MFCs) of 14 natural θ-defensins isoforms against drug-resistant C. albicans isolates identified peptides that are more active than amphotericin B and/or caspofungin against fluconazole-resistant organisms, including MDR Candida auris. These results point to the potential of macrocyclic θ-defensins as structural templates for the design of antifungal therapeutics.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Candidiasis/drug therapy , Defensins/pharmacology , Amphotericin B/pharmacology , Animals , Candida/isolation & purification , Candidiasis/microbiology , Caspofungin/pharmacology , Drug Resistance, Multiple, Fungal/physiology , Fluconazole/pharmacology , Histatins/pharmacology , Humans , Macaca mulatta , Microbial Sensitivity Tests , Protein Isoforms/pharmacology , Reactive Oxygen Species/metabolism
4.
J Biol Chem ; 293(8): 2725-2734, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29317500

ABSTRACT

Theta-defensins (θ-defensins) are macrocyclic peptides expressed exclusively in granulocytes and selected epithelia of Old World monkeys. They contribute to anti-pathogen host defense responses by directly killing a diverse range of microbes. Of note, θ-defensins also modulate microbe-induced inflammation by affecting the production of soluble tumor necrosis factor (sTNF) and other proinflammatory cytokines. Here, we report that natural rhesus macaque θ-defensin (RTD) isoforms regulate sTNF cellular release by inhibiting TNF-α-converting enzyme (TACE; also known as adisintegrin and metalloprotease 17; ADAM17), the primary pro-TNF sheddase. Dose-dependent inhibition of cellular TACE activity by RTDs occurred when leukocytes were stimulated with live Escherichia coli cells as well as numerous Toll-like receptor agonists. Moreover, the relative inhibitory potencies of the RTD isoforms strongly correlated with their suppression of TNF release by stimulated blood leukocytes and THP-1 monocytes. RTD isoforms also inhibited ADAM10, a sheddase closely related to TACE. TACE inhibition was abrogated by introducing a single opening in the RTD-1 backbone, demonstrating that the intact macrocycle is required for enzyme inhibition. Enzymologic analyses showed that RTD-1 is a fast binding, reversible, non-competitive inhibitor of TACE. We conclude that θ-defensin-mediated inhibition of pro-TNF proteolysis by TACE represents a rapid mechanism for the regulation of sTNF and TNF-dependent inflammatory pathways. Molecules with structural and functional features mimicking those of θ-defensins may have clinical utility as TACE inhibitors for managing TNF-driven diseases.


Subject(s)
ADAM17 Protein/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Defensins/pharmacology , Leukocytes/drug effects , Monocytes/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , ADAM10 Protein/antagonists & inhibitors , ADAM10 Protein/genetics , ADAM10 Protein/metabolism , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cell Line , Chlorocebus aethiops , Colon/drug effects , Colon/immunology , Colon/metabolism , Defensins/chemistry , Escherichia coli/immunology , Escherichia coli/physiology , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Lipopolysaccharides/toxicity , Macaca mulatta , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Monocytes/immunology , Monocytes/metabolism , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/pharmacology , Proteolysis/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solubility , Toll-Like Receptors/agonists , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/chemistry , Tumor Necrosis Factor-alpha/metabolism
5.
PLoS One ; 12(11): e0187868, 2017.
Article in English | MEDLINE | ID: mdl-29145473

ABSTRACT

θ-defensins constitute a family of macrocyclic peptides expressed exclusively in Old World monkeys. The peptides are pleiotropic effectors of innate immunity, possessing broad spectrum antimicrobial activities and immunoregulatory properties. Here we report that rhesus θ-defensin 1 (RTD-1) is highly effective in arresting and reversing joint disease in a rodent model of rheumatoid arthritis (RA). Parenteral RTD-1 treatment of DA/OlaHsd rats with established pristane-induced arthritis (PIA) rapidly suppressed joint disease progression, restored limb mobility, and preserved normal joint architecture. RTD-1 significantly reduced joint IL-1ß levels compared with controls. RTD-1 dose-dependently inhibited fibroblast-like synoviocyte (FLS) invasiveness and FLS IL-6 production. Consistent with the inhibition of FLS invasiveness, RTD-1 was a potent inhibitor of arthritogenic proteases including ADAMs 17 and 10 which activate TNFα, and inhibited matrix metalloproteases, and cathepsin K. RTD-1 was non-toxic, non-immunogenic, and effective when administered as infrequently as once every five days. Thus θ-defensins, which are absent in humans, have potential as retroevolutionary biologics for the treatment of RA.


Subject(s)
Arthritis, Rheumatoid/prevention & control , Defensins/pharmacology , Animals , Arthritis, Rheumatoid/immunology , Macaca mulatta , Male , Rats , Rats, Sprague-Dawley
6.
J Leukoc Biol ; 98(6): 1061-70, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26269197

ABSTRACT

θ-Defensins are pleiotropic, macrocyclic peptides that are expressed uniquely in Old World monkeys. The peptides are potent, broad-spectrum microbicides that also modulate inflammatory responses in vitro and in animal models of viral infection and polymicrobial sepsis. θ-Defensins suppress proinflammatory cytokine secretion by leukocytes stimulated with diverse Toll-like receptor (TLR) ligands. Studies were performed to delineate anti-inflammatory mechanisms of rhesus θ-defensin 1 (RTD-1), the most abundant θ-defensin isoform in macaque granulocytes. RTD-1 reduced the secretion of tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-8 in lipopolysaccharide (LPS)-stimulated human blood monocytes and THP-1 macrophages, and this was accompanied by inhibition of nuclear factor κB (NF-κB) activation and mitogen-activated protein kinase (MAPK) pathways. Peptide inhibition of NF-κB activation occurred following stimulation of extracellular (TLRs 1/2 and 4) and intracellular (TLR9) receptors. Although RTD-1 did not inhibit MAPK in unstimulated cells, it induced phosphorylation of Akt in otherwise untreated monocytes and THP-1 cells. In the latter, this occurred within 10 min of RTD-1 treatment and produced a sustained elevation of phosphorylated Akt (pAkt) for at least 4 h. pAkt is a negative regulator of MAPK and NF-κB activation. RTD-1 inhibited IκBα degradation and p38 MAPK phosphorylation, and stimulated Akt phosphorylation in LPS-treated human primary monocytes and THP-1 macrophages. Specific inhibition of phosphatidylinositol 3-kinase (PI3K) blocked RTD-1-stimulated Akt phosphorylation and reversed the suppression of NF-κB activation by the peptide. These studies indicate that the anti-inflammatory properties of θ-defensins are mediated by activation of the PI3K/Akt pathway and suppression of proinflammatory signals in immune-stimulated cells.


Subject(s)
Cytokines/immunology , Gene Expression Regulation/immunology , MAP Kinase Signaling System/immunology , Macrophages/immunology , Monocytes/immunology , NF-kappa B/immunology , Peptides, Cyclic/immunology , alpha-Defensins/immunology , Cell Line, Tumor , Female , Gene Expression Regulation/drug effects , Humans , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/drug effects , Macrophages/cytology , Male , Monocytes/cytology , Peptides, Cyclic/pharmacology , Phosphatidylinositol 3-Kinases/immunology , Phosphorylation/drug effects , Phosphorylation/immunology , Proto-Oncogene Proteins c-akt/immunology , Toll-Like Receptors/agonists , Toll-Like Receptors/immunology , alpha-Defensins/pharmacology , p38 Mitogen-Activated Protein Kinases/immunology
7.
PLoS One ; 7(12): e51337, 2012.
Article in English | MEDLINE | ID: mdl-23236475

ABSTRACT

Theta-defensins (θ-defensins) are macrocyclic antimicrobial peptides expressed in leukocytes of Old World monkeys. The peptides are broad spectrum microbicides in vitro and numerous θ-defensin isoforms have been identified in granulocytes of rhesus macaques and Olive baboons. Several mammalian α- and ß-defensins, genetically related to θ-defensins, have proinflammatory and immune-activating properties that bridge innate and acquired immunity. In the current study we analyzed the immunoregulatory properties of rhesus θ-defensins 1-5 (RTDs 1-5). RTD-1, the most abundant θ-defensin in macaques, reduced the levels of TNF, IL-1α, IL-1ß, IL-6, and IL-8 secreted by blood leukocytes stimulated by several TLR agonists. RTDs 1-5 suppressed levels of soluble TNF released by bacteria- or LPS-stimulated blood leukocytes and THP-1 monocytes. Despite their highly conserved conformation and amino acid sequences, the anti-TNF activities of RTDs 1-5 varied by as much as 10-fold. Systemically administered RTD-1 was non-toxic for BALB/c mice, and escalating intravenous doses were well tolerated and non-immunogenic in adult chimpanzees. The peptide was highly stable in serum and plasma. Single dose administration of RTD-1 at 5 mg/kg significantly improved survival of BALB/c mice with E. coli peritonitis and cecal ligation-and-puncture induced polymicrobial sepsis. Peptide treatment reduced serum levels of several inflammatory cytokines/chemokines in bacteremic animals. Collectively, these results indicate that the anti-inflammatory properties of θ-defensins in vitro and in vivo are mediated by the suppression of numerous proinflammatory cytokines and blockade of TNF release may be a primary effect.


Subject(s)
Defensins/immunology , Protein Isoforms/immunology , Sepsis/drug therapy , Sepsis/immunology , Animals , Chromatography, High Pressure Liquid , Cytokines/blood , Defensins/administration & dosage , Defensins/genetics , Defensins/therapeutic use , Dose-Response Relationship, Drug , Mice , Mice, Inbred BALB C , Neutralization Tests , Pan troglodytes , Protein Isoforms/administration & dosage , Protein Isoforms/genetics , Protein Isoforms/therapeutic use
8.
PLoS One ; 7(3): e32469, 2012.
Article in English | MEDLINE | ID: mdl-22448222

ABSTRACT

The azurophilic granules of human neutrophils contain four α-defensins called human neutrophil peptides (HNPs 1-4). HNPs are tridisulfide-linked antimicrobial peptides involved in the intracellular killing of organisms phagocytosed by neutrophils. The peptides are produced as inactive precursors (proHNPs) which are processed to active microbicides by as yet unidentified convertases. ProHNP1 was expressed in E. coli and the affinity-purified propeptide isolated as two species, one containing mature HNP1 sequence with native disulfide linkages ("folded proHNP1") and the other containing non-native disulfide linked proHNP1 conformers (misfolded proHNP1). Native HNP1, liberated by CNBr treatment of folded proHNP1, was microbicidal against Staphylococcus aureus, but the peptide derived from misfolded proHNP1 was inactive. We hypothesized that neutrophil elastase (NE), proteinase 3 (PR3) or cathepsin G (CG), serine proteases that co-localize with HNPs in azurophil granules, are proHNP1 activating convertases. Folded proHNP1 was converted to mature HNP1 by both NE and PR3, but CG generated an HNP1 variant with an N-terminal dipeptide extension. NE and PR3 cleaved folded proHNP1 to produce a peptide indistinguishable from native HNP1 purified from neutrophils, and the microbicidal activities of in vitro derived and natural HNP1 peptides were equivalent. In contrast, misfolded proHNP1 conformers were degraded extensively under the same conditions. Thus, NE and PR3 possess proHNP1 convertase activity that requires the presence of the native HNP1 disulfide motif for high fidelity activation of the precursor in vitro.


Subject(s)
Leukocyte Elastase/metabolism , Myeloblastin/metabolism , Protein Folding , Recombinant Proteins/metabolism , Staphylococcus aureus/metabolism , alpha-Defensins/metabolism , Amino Acid Sequence , Blotting, Western , Cathepsin G/metabolism , Chromatography, High Pressure Liquid , Humans , Microbial Sensitivity Tests , Microbial Viability , Molecular Sequence Data , Protein Precursors , Recombinant Proteins/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Staphylococcus aureus/growth & development , alpha-Defensins/genetics
9.
J Leukoc Biol ; 89(2): 283-90, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21084627

ABSTRACT

Mammalian defensins are cationic, antimicrobial peptides that play a central role in innate immunity. The peptides are composed of three structural subfamilies: α-, ß-, and θ-defensins. θ-defensins are macrocyclic octadecapeptides expressed only in Old World monkeys and orangutans and are produced by the pair-wise, head-to-tail splicing of nonapeptides derived from their respective precursors. The existence of three active θ-defensin genes predicts that six different RTDs (1-6) are produced in this species. In this study, we isolated and quantified RTDs 1-6 from the neutrophils of 10 rhesus monkeys. RTD-1 was the most abundant θ-defensin, constituting ~50% of the RTD content; total RTD content varied by as much as threefold between animals. All peptides tested were microbicidal at ∼1 µM concentrations. The contribution of θ-defensins to macaque neutrophil antimicrobial activity was assessed by analyzing the microbicidal properties of neutrophil granule extracts after neutralizing θ-defensin content with a specific antibody. θ-defensin neutralization markedly reduced microbicidal activities of the corresponding extracts. Macaque neutrophil granule extracts had significantly greater microbicidal activity than those of human neutrophils, which lack θ-defensins. Supplementation of human granule extracts with RTD-1 markedly increased the microbicidal activity of these preparations, further demonstrating a prominent microbicidal role for θ-defensins.


Subject(s)
Cytoplasmic Granules/immunology , Cytoplasmic Granules/microbiology , Defensins/physiology , Neutrophils/immunology , Neutrophils/microbiology , Animals , Basophils/immunology , Basophils/metabolism , Basophils/microbiology , Cell Extracts/genetics , Cell Extracts/immunology , Cell Extracts/metabolism , Cytoplasmic Granules/metabolism , Defensins/biosynthesis , Defensins/genetics , Female , Humans , Macaca mulatta , Male , Neutrophils/metabolism , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Protein Isoforms/physiology , Protein Precursors/biosynthesis , Protein Precursors/genetics , Protein Precursors/physiology
10.
J Biol Chem ; 284(9): 5602-9, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19109254

ABSTRACT

Mammalian defensins are cationic antimicrobial peptides that play a central role in host innate immunity and as regulators of acquired immunity. In animals, three structural defensin subfamilies, designated as alpha, beta, and , have been characterized, each possessing a distinctive tridisulfide motif. Mature alpha- and beta-defensins are produced by simple proteolytic processing of their prepropeptide precursors. In contrast, the macrocyclic -defensins are formed by the head-to-tail splicing of nonapeptides excised from a pair of prepropeptide precursors. Thus, elucidation of the -defensin biosynthetic pathway provides an opportunity to identify novel factors involved in this unique process. We incorporated the -defensin precursor, proRTD1a, into a bait construct for a yeast two-hybrid screen that identified rhesus macaque stromal cell-derived factor 2-like protein 1 (SDF2L1), as an interactor. SDF2L1 is a component of the endoplasmic reticulum (ER) chaperone complex, which we found to also interact with alpha- and beta-defensins. However, analysis of the SDF2L1 domain requirements for binding of representative alpha-, beta-, and -defensins revealed that alpha- and beta-defensins bind SDF2L1 similarly, but differently from the interactions that mediate binding of SDF2L1 to pro--defensins. Thus, SDF2L1 is a factor involved in processing and/or sorting of all three defensin subfamilies.


Subject(s)
Defensins/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Molecular Chaperones/metabolism , Protein Precursors/metabolism , alpha-Defensins/metabolism , beta-Defensins/metabolism , Amino Acid Sequence , Animals , Blotting, Western , Bone Marrow , Defensins/chemistry , Defensins/genetics , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , HL-60 Cells , Humans , Immunoprecipitation , Macaca mulatta , Membrane Proteins/genetics , Molecular Chaperones/genetics , Molecular Sequence Data , Myeloid Cells , Protein Biosynthesis , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid , Transcription, Genetic , Two-Hybrid System Techniques , alpha-Defensins/chemistry , alpha-Defensins/genetics , beta-Defensins/chemistry , beta-Defensins/genetics
11.
Mol Cell Biol ; 28(21): 6709-19, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18765638

ABSTRACT

Upstream activating factor (UAF) is a multisubunit complex that functions in the activation of ribosomal DNA (rDNA) transcription by RNA polymerase I (Pol I). Cells lacking the Uaf30 subunit of UAF reduce the rRNA synthesis rate by approximately 70% compared to wild-type cells and produce rRNA using both Pol I and Pol II. Miller chromatin spreads demonstrated that even though there is an overall reduction in rRNA synthesis in uaf30 mutants, the active rDNA genes in such strains are overloaded with polymerases. This phenotype was specific to defects in Uaf30, as mutations in other UAF subunits resulted in a complete absence of rDNA genes with high or even modest Pol densities. The lack of Uaf30 prevented UAF from efficiently binding to the rDNA promoter in vivo, leading to an inability to activate a large number of rDNA genes. The relatively few genes that did become activated were highly transcribed, apparently to compensate for the reduced rRNA synthesis capacity. The results show that Uaf30p is a key targeting factor for the UAF complex that facilitates activation of a large proportion of rDNA genes in the tandem array.


Subject(s)
DNA, Ribosomal/genetics , Genes, Fungal , Promoter Regions, Genetic/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Transcription Factors/metabolism , Transcription, Genetic , Mutation/genetics , Protein Binding , Protein Subunits/metabolism , RNA Polymerase I/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology
12.
Proc Natl Acad Sci U S A ; 102(29): 10129-34, 2005 Jul 19.
Article in English | MEDLINE | ID: mdl-16002464

ABSTRACT

Nucleosomes and their histone components have generally been recognized to act negatively on transcription. However, purified upstream activating factor (UAF), a transcription initiation factor required for RNA polymerase (Pol) I transcription in Saccharomyces cerevisiae, contains histones H3 and H4 and four nonhistone protein subunits. Other studies have shown that histones H3 and H4 are associated with actively transcribed rRNA genes. To examine their functional role in Pol I transcription, we constructed yeast strains in which synthesis of H3 is achieved from the glucose-repressible GAL10 promoter. We found that partial depletion of H3 (approximately 50% depletion) resulted in a strong inhibition (>80%) of Pol I transcription. A combination of biochemical analysis and electron microscopic (EM) analysis of Miller chromatin spreads indicated that initiation and elongation steps and rRNA processing were compromised upon histone depletion. A clear decrease in relative amounts of UAF, presumably caused by reduced stability, was also observed under the conditions of H3 depletion. Therefore, the observed inhibition of initiation can be explained, in part, by the decrease in UAF concentration. In addition, the EM results suggested that the defects in rRNA transcript elongation and processing may be a result of loss of histones from rRNA genes rather than (or in addition to) an indirect consequence of effects of histone depletion on expression of other genes. Thus, these results show functional importance of histones associated with actively transcribed rRNA genes.


Subject(s)
Genes, rRNA/genetics , Histones/metabolism , RNA Polymerase I/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic/physiology , Chromatin/ultrastructure , Microscopy, Electron , Saccharomyces cerevisiae
13.
Nucleic Acids Res ; 32(22): 6490-500, 2004.
Article in English | MEDLINE | ID: mdl-15601997

ABSTRACT

Rad23 protein interacts with the nucleotide excision-repair (NER) factor Rad4, and the dimer can bind damaged DNA. Rad23 also binds ubiquitinated proteins and promotes their degradation by the proteasome. Rad23/proteasome interaction is required for efficient NER, although the specific role of the Ub/proteasome system in DNA repair is unclear. We report that the availability of Rad4 contributes significantly to the cellular tolerance to UV light. Mutations in the proteasome, and in genes encoding the ubiquitin-conjugating enzymes Ubc4 and Ubc5, stabilized Rad4 and increased tolerance to UV light. A short amino acid sequence, previously identified in human Rad23, mediates the interaction between Rad23 and Rad4. We determined that this motif was required for stabilizing Rad4, and could function independently of the intact protein. A ubiquitin-like (UbL) domain in Rad23 binds the proteasome, and is required for conferring full resistance to DNA damage. However, Rad23/proteasome interaction appears unrelated to Rad23-mediated stabilization of Rad4. Specifically, simultaneous expression of a Rad23 mutant that could not bind the proteasome, with a mutant that could not interact with Rad4, fully suppressed the UV sensitivity of rad23Delta, demonstrating that Rad23 performs two independent, but concurrent roles in NER.


Subject(s)
DNA Repair , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Amino Acid Sequence , Binding Sites , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Mutation , Proteasome Endopeptidase Complex/genetics , Protein Structure, Tertiary , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/radiation effects , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Ultraviolet Rays
14.
Cell ; 117(4): 441-53, 2004 May 14.
Article in English | MEDLINE | ID: mdl-15137938

ABSTRACT

It is known that mutations in gene SIR2 increase and those in FOB1 decrease recombination within rDNA repeats as assayed by marker loss or extrachromosomal rDNA circle formation. SIR2-dependent chromatin structures have been thought to inhibit access and/or function of recombination machinery in rDNA. We measured the frequency of FOB1-dependent arrest of replication forks, consequent DNA double-strand breaks, and formation of DNA molecules with Holliday junction structures, and found no significant difference between sir2Delta and SIR2 strains. Formal genetic experiments measuring mitotic recombination rates within individual rRNA genes also showed no significant difference between these two strains. Instead, we found a significant decrease in the association of cohesin subunit Mcd1p (Scc1p) to rDNA in sir2Delta relative to SIR2 strains. From these and other experiments, we conclude that SIR2 prevents unequal sister-chromatid recombination, probably by forming special cohesin structures, without significant effects on recombinational events within individual rRNA genes.


Subject(s)
DNA, Ribosomal/genetics , Genes, rRNA/genetics , Histone Deacetylases/genetics , Recombination, Genetic/genetics , Saccharomyces cerevisiae/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Sirtuins/genetics , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone , DNA Repair/genetics , DNA, Cruciform/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Fungal/genetics , Mutation/genetics , Nuclear Proteins , Phosphoproteins , RNA Stability/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sirtuin 2 , Sister Chromatid Exchange/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...