Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 126(12): 5665-5674, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35392435

ABSTRACT

Following the rise of interest in the properties of transition metal dichalcogenides, many experimental techniques were employed to research them. However, the temperature dependencies of optical transitions, especially those related to band nesting, were not analyzed in detail for many of them. Here, we present successful studies utilizing the photoreflectance method, which, due to its derivative and absorption-like character, allows investigating direct optical transitions at the high-symmetry point of the Brillouin zone and band nesting. By studying the mentioned optical transitions with temperature from 20 to 300 K, we tracked changes in the electronic band structure for the common transition metal dichalcogenides (TMDs), namely, MoS2, MoSe2, MoTe2, WS2, and WSe2. Moreover, transmission and photoacoustic spectroscopies were also employed to investigate the indirect gap in these crystals. For all observed optical transitions assigned to specific k-points of the Brillouin zone, their temperature dependencies were analyzed using the Varshni relation and Bose-Einstein expression. It was shown that the temperature energy shift for the transition associated with band nesting is smaller when compared with the one at high-symmetry point, revealing reduced average electron-phonon interaction strength.

2.
Nat Commun ; 12(1): 4933, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34400620

ABSTRACT

Engineering non-linear hybrid light-matter states in tailored lattices is a central research strategy for the simulation of complex Hamiltonians. Excitons in atomically thin crystals are an ideal active medium for such purposes, since they couple strongly with light and bear the potential to harness giant non-linearities and interactions while presenting a simple sample-processing and room temperature operability. We demonstrate lattice polaritons, based on an open, high-quality optical cavity, with an imprinted photonic lattice strongly coupled to excitons in a WS2 monolayer. We experimentally observe the emergence of the canonical band-structure of particles in a one-dimensional lattice at room temperature, and demonstrate frequency reconfigurability over a spectral window exceeding 85 meV, as well as the systematic variation of the nearest-neighbour coupling, reflected by a tunability in the bandwidth of the p-band polaritons by 7 meV. The technology presented in this work is a critical demonstration towards reconfigurable photonic emulators operated with non-linear photonic fluids, offering a simple experimental implementation and working at ambient conditions.

3.
Opt Express ; 28(13): 18649-18657, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672161

ABSTRACT

The large oscillator strength of excitons in transition metal dichalcogenide layers facilitates the formation of exciton-polariton resonances for monolayers and van-der-Waals heterostructures embedded in optical microcavities. Here, we show, that locally changing the number of layers in a WSe2/hBN/WSe2 van-der-Waals heterostructure embedded in a monolithic, high-quality-factor cavity gives rise to a local variation of the coupling strength. This effect yields a polaritonic stair case potential, which we demonstrate at room temperature. Our result paves the way towards engineering local polaritonic potentials at length scales down to atomically sharp interfaces, based on purely modifying its real part contribution via the coherent light-matter coupling strength g.

4.
RSC Adv ; 10(63): 38227-38232, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-35517551

ABSTRACT

We demonstrate the synthesis of layered anisotropic semiconductor GeSe and GeSe2 nanomaterials through low temperature (∼400 °C) and atmospheric pressure chemical vapor deposition using halide based precursors. Results show that GeI2 and H2Se precursors successfully react in the gas-phase and nucleate on a variety of target substrates including sapphire, Ge, GaAs, or HOPG. Layer-by-layer growth takes place after nucleation to form layered anisotropic materials. Detailed SEM, EDS, XRD, and Raman spectroscopy measurements together with systematic CVD studies reveal that the substrate temperature, selenium partial pressure, and the substrate type ultimately dictate the resulting stoichiometry and phase of these materials. Results from this work introduce the phase control of Ge and Se based nanomaterials (GeSe and GeSe2) using halide based CVD precursors at ATM pressures and low temperatures. Overall findings also extend our fundamental understanding of their growth by making the first attempt to correlate growth parameters to resulting competing phases of Ge-Se based materials.

5.
Nanotechnology ; 28(41): 415706, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-28745618

ABSTRACT

We report experimental and theoretical investigations of the observed barrier behavior of few-layer MoS2 against nitrogenation. Owing to its low-strength shearing, low friction coefficient, and high lubricity, MoS2 exhibits the demeanor of a natural N-resistant coating material. Raman spectroscopy is done to determine the coating capability of MoS2 on graphene. Surface morphology of our MoS2/graphene heterostructure is characterized by using optical microscopy, scanning electron microscopy, and atomic force microscopy. In addition, density functional theory-based calculations are performed to understand the energy barrier performance of MoS2 against nitrogenation. The penetration of nitrogen atoms through a defect-free MoS2 layer is prevented by a very high vertical diffusion barrier, indicating that MoS2 can serve as a protective layer for the nitrogenation of graphene. Our experimental and theoretical results show that MoS2 material can be used both as an efficient nanocoating material and as a nanoscale mask for selective nitrogenation of graphene layer.

6.
Sci Rep ; 6: 26663, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27215469

ABSTRACT

The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been determined for these transitions to be: αA = 2.0 ± 0.1 and αB = 3.6 ± 0.1 meV/kbar for MoS2, αA = 2.3 ± 0.1 and αB = 4.0 ± 0.1 meV/kbar for MoSe2, αA = 2.6 ± 0.1 and αB = 4.1 ± 0.1 meV/kbar for WS2, αA = 3.4 ± 0.1 and αB = 5.0 ± 0.5 meV/kbar for WSe2. It has been found that these coefficients are in an excellent agreement with theoretical predictions. In addition, a comparative study of different computational DFT approaches has been performed and analyzed. For indirect gap the pressure coefficient have been determined theoretically to be -7.9, -5.51, -6.11, and -3.79, meV/kbar for MoS2, MoSe2, WS2, and WSe2, respectively. The negative values of this coefficients imply a narrowing of the fundamental band gap with the increase in hydrostatic pressure and a semiconductor to metal transition for MoS2, MoSe2, WS2, and WSe2, crystals at around 140, 180, 190, and 240 kbar, respectively.

7.
J Phys Condens Matter ; 24(25): 255802, 2012 Jun 27.
Article in English | MEDLINE | ID: mdl-22652899

ABSTRACT

We investigate the electronic transport properties across the pentacene/graphene interface. Current transport across the pentacene/graphene interface is found to be strikingly different from transport across pentacene/HOPG and pentacene/Cu interfaces. At low voltages, diodes using graphene as a bottom electrode display Poole­Frenkel emission, while diodes with HOPG and Cu electrodes are dominated by thermionic emission. At high voltages conduction is dominated by Poole­Frenkel emission for all three junctions. We propose that current across these interfaces can be accurately modeled by a combination of thermionic and Poole­Frenkel emission. Results presented not only suggest that graphene provides low resistive contacts to pentacene where a flat-laying orientation of pentacene and transparent metal electrodes are desired but also provides further understanding of the physics at the organic semiconductor/graphene interface.

8.
Nanotechnology ; 22(42): 425701, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21934196

ABSTRACT

We report on the p doping of graphene with the polymer TFSA ((CF(3)SO(2))(2)NH). Modification of graphene with TFSA decreases the graphene sheet resistance by 70%. Through such modification, we report sheet resistance values as low as 129 Ω, thus attaining values comparable to those of indium-tin oxide (ITO), while displaying superior environmental stability and preserving electrical properties over extended time scales. Electrical transport measurements reveal that, after doping, the carrier density of holes increases, consistent with the acceptor nature of TFSA, and the mobility decreases due to enhanced short-range scattering. The Drude formula predicts that competition between these two effects yields an overall increase in conductivity. We confirm changes in the carrier density and Fermi level of graphene through changes in the Raman G and 2D peak positions. Doped graphene samples display high transmittance in the visible and near-infrared spectrum, preserving graphene's optical properties without any significant reduction in transparency, and are therefore superior to ITO films in the near infrared. The presented results allow integration of doped graphene sheets into optoelectronics, solar cells, and thermoelectric solar cells as well as engineering of the electrical characteristics of various devices by tuning the Fermi level of graphene.

9.
J Phys Condens Matter ; 17(25): 3823-36, 2005 Jun 29.
Article in English | MEDLINE | ID: mdl-21690699

ABSTRACT

This paper presents an extensive study of various string and tubular structures formed by carbon atomic chains. Our study is based on first-principles pseudopotential plane wave and finite-temperature ab initio molecular dynamics calculations. Infinite- and finite-length carbon chains exhibit unusual mechanical and electronic properties such as large cohesive energy, axial strength, high conductance, and overall structural stability even at high temperatures. They are suitable for structural and chemical functionalizations. Owing to their flexibility and reactivity they can form linear chain, ring, helix, two-dimensional rectangular and honeycomb grids, three-dimensional cubic networks, and tubular structures. Metal-semiconductor heterostructures and various quantum structures, such as multiple quantum wells and double-barrier resonant tunnelling structures, can be formed from the junctions of metallic carbon and semiconducting BN linear chains. Analysis of atomic and electronic structures of these periodic, finite, and doped structures reveals fundamentally and technologically interesting features, such as structural instabilities and chiral currents. The double covalent bonding of carbon atoms depicted through self-consistent charge density analysis underlies the chemical, mechanical, and electronic properties.

10.
Phys Rev Lett ; 93(13): 136404, 2004 Sep 24.
Article in English | MEDLINE | ID: mdl-15524745

ABSTRACT

First-principles calculations show that monatomic strings of carbon have high cohesive energy and axial strength, and exhibit stability even at high temperatures. Because of their flexibility and reactivity, carbon chains are suitable for structural and chemical functionalizations; they also form stable ring, helix, grid, and network structures. Analysis of electronic conductance of various infinite, finite, and doped string structures reveal fundamental and technologically interesting features. Changes in doping and geometry give rise to dramatic variations in conductance. In even-numbered linear chains, strain induces a substantial decrease of conductance. The double covalent bonding of carbon atoms underlies their unusual chemical, mechanical, and transport properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...