Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
J Med Chem ; 67(12): 10293-10305, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38838188

ABSTRACT

To fully explore the potential of 18F-labeled l-fluoroalanine for imaging cancer and other chronic diseases, a simple and mild radiosynthesis method has been established to produce optically pure l-3-[18F]fluoroalanine (l-[18F]FAla), using a serine-derivatized, five-membered-ring sulfamidate as the radiofluorination precursor. A deuterated analogue, l-3-[18F]fluoroalanine-d3 (l-[18F]FAla-d3), was also prepared to improve metabolic stability. Both l-[18F]FAla and l-[18F]FAla-d3 were rapidly taken up by 9L/lacZ, MIA PaCa-2, and U87MG cells and were shown to be substrates for the alanine-serine-cysteine (ASC) amino acid transporter. The ability of l-[18F]FAla, l-[18F]FAla-d3, and the d-enantiomer, d-[18F]FAla-d3, to image tumors was evaluated in U87MG tumor-bearing mice. Despite the significant bone uptake was observed for both l-[18F]FAla and l-[18F]FAla-d3, the latter had enhanced tumor uptake compared to l-[18F]FAla, and d-[18F]FAla-d3 was not specifically taken up by the tumors. The enhanced tumor uptake of l-[18F]FAla-d3 compared with its nondeuterated counterpart, l-[18F]FAla, warranted the further biological investigation of this radiotracer as a potential cancer imaging agent.


Subject(s)
Deuterium , Fluorine Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals , Fluorine Radioisotopes/chemistry , Animals , Humans , Positron-Emission Tomography/methods , Deuterium/chemistry , Cell Line, Tumor , Mice , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/pharmacology , Neoplasms/diagnostic imaging , Mice, Nude , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/chemical synthesis , Alanine/pharmacokinetics , Tissue Distribution
2.
ACS Chem Biol ; 19(3): 696-706, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38385342

ABSTRACT

The blue-light photoreceptor YtvA from Bacillus subtilis has an N-terminal flavin mononucleotide (FMN)-binding light-oxygen-voltage (LOV) domain that is fused to a C-terminal sulfate transporter and anti-σ factor antagonist (STAS) output domain. To interrogate the signal transduction pathway that leads to photoactivation, the STAS domain was replaced with a histidine kinase, so that photoexcitation of the flavin could be directly correlated with biological activity. N94, a conserved Asn that is hydrogen bonded to the FMN C2═O group, was replaced with Ala, Asp, and Ser residues to explore the role of this residue in triggering the structural dynamics that activate the output domain. Femtosecond to millisecond time-resolved multiple probe spectroscopy coupled with a fluorescence polarization assay revealed that the loss of the hydrogen bond between N94 and the C2═O group decoupled changes in the protein structure from photoexcitation. In addition, alterations in N94 also decreased the stability of the Cys-FMN adduct formed in the light-activated state by up to a factor of ∼25. Collectively, these studies shed light on the role of the hydrogen bonding network in the LOV ß-scaffold in signal transduction.


Subject(s)
Bacterial Proteins , Photoreceptors, Microbial , Bacterial Proteins/metabolism , Spectrum Analysis , Photoreceptors, Microbial/chemistry , Bacillus subtilis/metabolism , Flavin Mononucleotide/metabolism
3.
J Mol Biol ; 436(5): 168312, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37827329

ABSTRACT

Photoactivated adenylate cyclases (PACs) are light-activated enzymes that combine a BLUF (blue-light using flavin) domain and an adenylate cyclase domain that are able to increase the levels of the important second messenger cAMP (cyclic adenosine monophosphate) upon blue-light excitation. The light-induced changes in the BLUF domain are transduced to the adenylate cyclase domain via a mechanism that has not yet been established. One critical residue in the photoactivation mechanism of BLUF domains, present in the vicinity of the flavin is the glutamine amino acid close to the N5 of the flavin. The role of this residue has been investigated extensively both experimentally and theoretically. However, its role in the activity of the photoactivated adenylate cyclase, OaPAC has never been addressed. In this work, we applied ultrafast transient visible and infrared spectroscopies to study the photochemistry of the Q48E OaPAC mutant. This mutation altered the primary electron transfer process and switched the enzyme into a permanent 'on' state, able to increase the cAMP levels under dark conditions compared to the cAMP levels of the dark-adapted state of the wild-type OaPAC. Differential scanning calorimetry measurements point to a less compact structure for the Q48E OaPAC mutant. The ensemble of these findings provide insight into the important elements in PACs and how their fine tuning may help in the design of optogenetic devices.


Subject(s)
Adenylyl Cyclases , Bacterial Proteins , Glutamine , Oscillatoria , Adenylyl Cyclases/chemistry , Adenylyl Cyclases/genetics , Adenylyl Cyclases/radiation effects , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/radiation effects , Flavins/chemistry , Flavins/radiation effects , Light , Mutation , Glutamine/genetics , Protein Domains/drug effects , Electron Transport , Enzyme Activation/radiation effects , Oscillatoria/enzymology
4.
Bioorg Chem ; 139: 106747, 2023 10.
Article in English | MEDLINE | ID: mdl-37531819

ABSTRACT

Ceramides impact a diverse array of biological functions and have been implicated in disease pathogenesis. The enzyme neutral ceramidase (nCDase) is a zinc-containing hydrolase and mediates the metabolism of ceramide to sphingosine (Sph), both in cells and in the intestinal lumen. nCDase inhibitors based on substrate mimetics, for example C6-urea ceramide, have limited potency, aqueous solubility, and micelle-free fraction. To identify non-ceramide mimetic nCDase inhibitors, hit compounds from an HTS campaign were evaluated in biochemical, cell based and in silico modeling approaches. A majority of small molecule nCDase inhibitors contained pharmacophores capable of zinc interaction but retained specificity for nCDase over zinc-containing acid and alkaline ceramidases, as well as matrix metalloprotease-3 and histone deacetylase-1. nCDase inhibitors were refined by SAR, were shown to be substrate competitive and were active in cellular assays. nCDase inhibitor compounds were modeled by in silico DOCK screening and by molecular simulation. Modeling data supports zinc interaction and a similar compound binding pose with ceramide. nCDase inhibitors were identified with notably improved activity and solubility in comparison with the reference lipid-mimetic C6-urea ceramide.


Subject(s)
Ceramides , Neutral Ceramidase , Catalytic Domain , Ceramides/chemistry , Neutral Ceramidase/antagonists & inhibitors , Sphingosine/chemistry
5.
J Biol Chem ; 299(8): 105056, 2023 08.
Article in English | MEDLINE | ID: mdl-37468104

ABSTRACT

Photoactivated adenylate cyclases (PACs) are light activated enzymes that combine blue light sensing capacity with the ability to convert ATP to cAMP and pyrophosphate (PPi) in a light-dependent manner. In most of the known PACs blue light regulation is provided by a blue light sensing domain using flavin which undergoes a structural reorganization after blue-light absorption. This minor structural change then is translated toward the C-terminal of the protein, inducing a larger conformational change that results in the ATP conversion to cAMP. As cAMP is a key second messenger in numerous signal transduction pathways regulating various cellular functions, PACs are of great interest in optogenetic studies. The optimal optogenetic device must be "silent" in the dark and highly responsive upon light illumination. PAC from Oscillatoria acuminata is a very good candidate as its basal activity is very small in the dark and the conversion rates increase 20-fold upon light illumination. We studied the effect of replacing D67 to N, in the blue light using flavin domain. This mutation was found to accelerate the primary electron transfer process in the photosensing domain of the protein, as has been predicted. Furthermore, it resulted in a longer lived signaling state, which was formed with a lower quantum yield. Our studies show that the overall effects of the D67N mutation lead to a slightly higher conversion of ATP to cAMP, which points in the direction that by fine tuning the kinetic properties more responsive PACs and optogenetic devices can be generated.


Subject(s)
Adenylyl Cyclases , Bacterial Proteins , Oscillatoria , Adenosine Triphosphate , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flavins/metabolism , Light , Second Messenger Systems , Oscillatoria/enzymology
6.
Biochemistry ; 62(12): 1943-1952, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37270808

ABSTRACT

InhA, the Mycobacterium tuberculosis enoyl-ACP reductase, is a target for the tuberculosis (TB) drug isoniazid (INH). InhA inhibitors that do not require KatG activation avoid the most common mechanism of INH resistance, and there are continuing efforts to fully elucidate the enzyme mechanism to drive inhibitor discovery. InhA is a member of the short-chain dehydrogenase/reductase superfamily characterized by a conserved active site Tyr, Y158 in InhA. To explore the role of Y158 in the InhA mechanism, this residue has been replaced by fluoroTyr residues that increase the acidity of Y158 up to ∼3200-fold. Replacement of Y158 with 3-fluoroTyr (3-FY) and 3,5-difluoroTyr (3,5-F2Y) has no effect on kcatapp/KMapp nor on the binding of inhibitors to the open form of the enzyme (Kiapp), whereas both kcatapp/KMapp and Kiapp are altered by seven-fold for the 2,3,5-trifluoroTyr variant (2,3,5-F3Y158 InhA). 19F NMR spectroscopy suggests that 2,3,5-F3Y158 is ionized at neutral pH indicating that neither the acidity nor ionization state of residue 158 has a major impact on catalysis or on the binding of substrate-like inhibitors. In contrast, Ki*app is decreased 6- and 35-fold for the binding of the slow-onset inhibitor PT504 to 3,5-F2Y158 and 2,3,5-F3Y158 InhA, respectively, indicating that Y158 stabilizes the closed form of the enzyme adopted by EI*. The residence time of PT504 is reduced ∼four-fold for 2,3,5-F3Y158 InhA compared to wild-type, and thus, the hydrogen bonding interaction of the inhibitor with Y158 is an important factor in the design of InhA inhibitors with increased residence times on the enzyme.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Isoniazid/chemistry , Isoniazid/pharmacology , Catalytic Domain , Bacterial Proteins/chemistry
7.
J Med Chem ; 66(11): 7454-7474, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37195170

ABSTRACT

Bruton's tyrosine kinase (BTK) is a target for treating B-cell malignancies and autoimmune diseases, and several BTK inhibitors are already approved for use in humans. Heterobivalent BTK protein degraders are also in development, based on the premise that proteolysis targeting chimeras (PROTACs) may provide additional therapeutic benefits. However, most BTK PROTACs are based on the BTK inhibitor ibrutinib raising concerns about their selectivity profiles, given the known off-target effects of ibrutinib. Here, we disclose the discovery and in vitro characterization of BTK PROTACs based on the selective BTK inhibitor GDC-0853 and the cereblon recruitment ligand pomalidomide. PTD10 is a highly potent BTK degrader (DC50 0.5 nM) that inhibited cell growth and induced apoptosis at lower concentrations than the two parent molecules, as well as three previously reported BTK PROTACs, and had improved selectivity compared to ibrutinib-based BTK PROTACs.


Subject(s)
B-Lymphocytes , Protein-Tyrosine Kinases , Proteolysis Targeting Chimera , Humans , Agammaglobulinaemia Tyrosine Kinase , B-Lymphocytes/metabolism , Cell Proliferation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proteolysis Targeting Chimera/chemistry , Proteolysis Targeting Chimera/pharmacology
8.
J Am Chem Soc ; 145(13): 7123-7135, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36961978

ABSTRACT

The design of PROteolysis-TArgeting Chimeras (PROTACs) requires bringing an E3 ligase into proximity with a target protein to modulate the concentration of the latter through its ubiquitination and degradation. Here, we present a method for generating high-accuracy structural models of E3 ligase-PROTAC-target protein ternary complexes. The method is dependent on two computational innovations: adding a "silent" convolution term to an efficient protein-protein docking program to eliminate protein poses that do not have acceptable linker conformations and clustering models of multiple PROTACs that use the same E3 ligase and target the same protein. Results show that the largest consensus clusters always have high predictive accuracy and that the ensemble of models can be used to predict the dissociation rate and cooperativity of the ternary complex that relate to the degrading activity of the PROTAC. The method is demonstrated by applications to known PROTAC structures and a blind test involving PROTACs against BRAF mutant V600E. The results confirm that PROTACs function by stabilizing a favorable interaction between the E3 ligase and the target protein but do not necessarily exploit the most energetically favorable geometry for interaction between the proteins.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Ubiquitination
9.
ACS Pharmacol Transl Sci ; 6(3): 410-421, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36926452

ABSTRACT

Bruton's tyrosine kinase (BTK) is a target for treating B-cell malignancies and autoimmune diseases. To aid in the discovery and development of BTK inhibitors and improve clinical diagnoses, we have developed a positron emission tomography (PET) radiotracer based on a selective BTK inhibitor, remibrutinib. [18F]PTBTK3 is an aromatic, 18F-labeled tracer that was synthesized in 3 steps with a 14.8 ± 2.4% decay-corrected radiochemical yield and ≥99% radiochemical purity. The cellular uptake of [18F]PTBTK3 was blocked up to 97% in JeKo-1 cells using remibrutinib or non-radioactive PTBTK3. [18F]PTBTK3 exhibited renal and hepatobiliary clearance in NOD SCID (non-obese diabetic/severe combined immunodeficiency) mice, and the tumor uptake of [18F]PTBTK3 in BTK-positive JeKo-1 xenografts (1.23 ± 0.30% ID/cc) was significantly greater at 60 min post injection compared to the tumor uptake in BTK-negative U87MG xenografts (0.41 ± 0.11% ID/cc). In the JeKo-1 xenografts, tumor uptake was blocked up to 62% by remibrutinib, indicating the BTK-dependent uptake of [18F]PTBTK3 in tumors.

10.
J Med Chem ; 65(24): 16510-16525, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36459397

ABSTRACT

The relationship between drug-target residence time and the post-antibiotic effect (PAE) provides insights into target vulnerability. To probe the vulnerability of bacterial acetyl-CoA carboxylase (ACC), a series of heterobivalent inhibitors were synthesized based on pyridopyrimidine 1 and moiramide B (3) which bind to the biotin carboxylase and carboxyltransferase ACC active sites, respectively. The heterobivalent compound 17, which has a linker of 50 Å, was a tight binding inhibitor of Escherichia coli ACC (Kiapp 0.2 nM) and could be displaced from ACC by a combination of both 1 and 3 but not just by 1. In agreement with the prolonged occupancy of ACC resulting from forced proximity binding, the heterobivalent inhibitors produced a PAE in E. coli of 1-4 h in contrast to 1 and 3 in combination or alone, indicating that ACC is a vulnerable target and highlighting the utility of kinetic, time-dependent effects in the drug mechanism of action.


Subject(s)
Acetyl-CoA Carboxylase , Escherichia coli , Escherichia coli/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Catalytic Domain
11.
J Med Chem ; 65(17): 11854-11875, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36037447

ABSTRACT

UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a promising drug target in Gram-negative bacteria. Previously, we described a correlation between the residence time of inhibitors on Pseudomonas aeruginosa LpxC (paLpxC) and the post-antibiotic effect (PAE) caused by the inhibitors on the growth of P. aeruginosa. Given that drugs with prolonged activity following compound removal may have advantages in dosing regimens, we have explored the structure-kinetic relationship for paLpxC inhibition by analogues of the pyridone methylsulfone PF5081090 (1) originally developed by Pfizer. Several analogues have longer residence times on paLpxC than 1 (41 min) including PT913, which has a residence time of 124 min. PT913 also has a PAE of 4 h, extending the original correlation observed between residence time and PAE. Collectively, the studies provide a platform for the rational modulation of paLpxC inhibitor residence time and the potential development of antibacterial agents that cause prolonged suppression of bacterial growth.


Subject(s)
Amidohydrolases , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Gram-Negative Bacteria/metabolism , Kinetics
12.
ACS Chem Biol ; 17(9): 2643-2654, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36038143

ABSTRACT

The hydrogen bonding network that surrounds the flavin in blue light using flavin adenine dinucleotide (BLUF) photoreceptors plays a crucial role in sensing and communicating the changes in the electronic structure of the flavin to the protein matrix upon light absorption. Using time-resolved infrared spectroscopy (TRIR) and unnatural amino acid incorporation, we investigated the photoactivation mechanism and the role of the conserved tyrosine (Y6) in the forward reaction of the photoactivated adenylyl cyclase from Oscillatoria acuminata (OaPAC). Our work elucidates the direct connection between BLUF photoactivation and the structural and functional implications on the partner protein for the first time. The TRIR results demonstrate the formation of the neutral flavin radical as an intermediate species on the photoactivation pathway which decays to form the signaling state. Using fluorotyrosine analogues to modulate the physical properties of Y6, the TRIR data reveal that a change in the pKa and/or reduction potential of Y6 has a profound effect on the forward reaction, consistent with a mechanism involving proton transfer or proton-coupled electron transfer from Y6 to the electronically excited FAD. Decreasing the pKa from 9.9 to <7.2 and/or increasing the reduction potential by 200 mV of Y6 prevents proton transfer to the flavin and halts the photocycle at FAD•-. The lack of protonation of the anionic flavin radical can be directly linked to photoactivation of the adenylyl cyclase (AC) domain. While the 3F-Y6 and 2,3-F2Y6 variants undergo the complete photocycle and catalyze the conversion of ATP into cAMP, enzyme activity is abolished in the 3,5-F2Y6 and 2,3,5-F3Y6 variants where the photocycle is halted at FAD•-. Our results thus show that proton transfer plays an essential role in initiating the structural reorganization of the AC domain that results in AC activity.


Subject(s)
Adenylyl Cyclases , Flavin-Adenine Dinucleotide , Adenosine Triphosphate , Adenylyl Cyclases/genetics , Amino Acids , Bacterial Proteins/metabolism , Flavin-Adenine Dinucleotide/chemistry , Flavins/chemistry , Light , Mutagenesis , Protons , Spectrum Analysis , Tyrosine
13.
Acc Chem Res ; 55(3): 402-414, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35016505

ABSTRACT

Light activated proteins are at the heart of photobiology and optogenetics, so there is wide interest in understanding the mechanisms coupling optical excitation to protein function. In addition, such light activated proteins provide unique insights into the real-time dynamics of protein function. Using pump-probe spectroscopy, the function of a photoactive protein can be initiated by a sub-100 fs pulse of light, allowing subsequent protein dynamics to be probed from femtoseconds to milliseconds and beyond. Among the most interesting photoactive proteins are the blue light using flavin (BLUF) domain proteins, which regulate the response to light of a wide range of bacterial and some euglenoid processes. The photosensing mechanism of BLUF domains has long been a subject of debate. In contrast to other photoactive proteins, the electronic and nuclear structure of the chromophore (flavin) is the same in dark- and light-adapted states. Thus, the driving force for photoactivity is unclear.To address this question requires real-time observation of both chromophore excited state processes and their effect on the structure and dynamics of the surrounding protein matrix. In this Account we describe how time-resolved infrared (IR) experiments, coupled with chemical biology, provide important new insights into the signaling mechanism of BLUF domains. IR measurements are sensitive to changes in both chromophore electronic structure and protein hydrogen bonding interactions. These contributions are resolved by isotope labeling of the chromophore and protein separately. Further, a degree of control over BLUF photochemistry is achieved through mutagenesis, while unnatural amino acid substitution allows us to both fine-tune the photochemistry and time resolve protein dynamics with spatial resolution.Ultrafast studies of BLUF domains reveal non-single-exponential relaxation of the flavin excited state. That relaxation leads within one nanosecond to the original flavin ground state bound in a modified hydrogen-bonding network, as seen in transient and steady-state IR spectroscopy. The change in H-bond configuration arises from formation of an unusual enol (imine) form of a critical glutamine residue. The dynamics observed, complemented by quantum mechanical calculations, suggest a unique sequential electron then double proton transfer reaction as the driving force, followed by rapid reorganization in the binding site and charge recombination. Importantly, studies of several BLUF domains reveal an unexpected diversity in their dynamics, although the underlying structure appears highly conserved. It is suggested that this diversity reflects structural dynamics in the ground state at standard temperature, leading to a distribution of structures and photochemical outcomes. Time resolved IR measurements were extended to the millisecond regime for one BLUF domain, revealing signaling state formation on the microsecond time scale. The mechanism involves reorganization of a ß-sheet connected to the chromophore binding pocket via a tryptophan residue. The potential of site-specific labeling amino acids with IR labels as a tool for probing protein structural dynamics was demonstrated.In summary, time-resolved IR studies of BLUF domains (along with related studies at visible wavelengths and quantum and molecular dynamics calculations) have resolved the photoactivation mechanism and real-time dynamics of signaling state formation. These measurements provide new insights into protein structural dynamics and will be important in optimizing the potential of BLUF domains in optobiology.


Subject(s)
Bacterial Proteins , Flavins , Bacterial Proteins/chemistry , Electron Transport , Flavins/chemistry , Hydrogen Bonding , Protein Structure, Tertiary
14.
ACS Infect Dis ; 7(9): 2755-2763, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34357770

ABSTRACT

The translation of time-dependent drug-target occupancy to extended pharmacological activity at low drug concentration depends on factors such as target vulnerability and the rate of target turnover. Previously, we demonstrated that the postantibiotic effect (PAE) caused by inhibitors of bacterial drug targets could be used to assess target vulnerability, and that high levels of target vulnerability coupled with relatively low rates of target resynthesis resulted in a strong correlation between drug-target residence time and the PAE following compound washout. Although the residence time of inhibitors on UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) in Pseudomonas aeruginosa (paLpxC) results in significant PAE, inhibitors of the equivalent enzyme in Escherichia coli (ecLpxC) do not cause a PAE. Hyperactivity of the fatty acid biosynthesis enzyme FabZ or the inclusion of sub-MIC levels of azithromycin lead to the observation of a PAE for three inhibitors of ecLpxC. FabZ hyperactivity has been shown to stabilize ecLpxC, and using mass spectrometry, we demonstrate that the appearance of a PAE can be directly linked to a 3-fold increase in the stability of ecLpxC. These studies substantiate the importance of target turnover in time-dependent drug activity.


Subject(s)
Anti-Bacterial Agents , Pharmaceutical Preparations , Anti-Bacterial Agents/pharmacology , Bacteria , Escherichia coli/genetics , Pseudomonas aeruginosa
15.
J Phys Chem A ; 125(28): 6171-6179, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34240863

ABSTRACT

Blue light absorbing flavoproteins play important roles in a variety of photobiological processes. Consequently, there have been numerous investigations of their excited state structure and dynamics, in particular by time-resolved vibrational spectroscopy. The isoalloxazine chromophore of the flavoprotein cofactors has been studied in detail by time-resolved Raman, lending it a benchmark status for mode assignments in excited electronic states of large molecules. However, detailed comparisons of calculated and measured spectra have proven challenging, as there are many more modes calculated than are observed, and the role of resonance enhancement is difficult to characterize in excited electronic states. Here we employ a recently developed approach due to Elles and co-workers ( J. Phys. Chem. A 2018, 122, 8308-8319) for the calculation of resonance-enhanced Raman spectra of excited states and apply it to the lowest singlet and triplet excited states of the isoalloxazine chromophore. There is generally good agreement between calculated and observed enhancements, which allows assignment of vibrational bands of the flavoprotein cofactors to be refined. However, some prominently enhanced bands are found to be absent from the calculations, suggesting the need for further development of the theory.

16.
RSC Med Chem ; 12(1): 120-128, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-34046604

ABSTRACT

Triclosan and isoniazid are known antitubercular compounds that have proven to be also active against Leishmania parasites. On these grounds, a collection of 37 diverse 1,2,3-triazoles based on the antitubercular molecules triclosan and 5-octyl-2-phenoxyphenol (8PP) were designed in search of novel structures with leishmanicidal activity and prepared using different alkynes and azides. The 37 compounds were assayed against Leishmania donovani, the etiological agent of leishmaniasis, yielding some analogs with activity at micromolar concentrations and against M. tuberculosis H37Rv resulting in scarce active compounds with an MIC of 20 µM. To study the mechanism of action of these catechols, we analyzed the inhibition activity of the library on the M. tuberculosis enoyl-ACP reductase (ENR) InhA, obtaining poor inhibition of the enzyme. The cytotoxicity against Vero cells was also tested, resulting in none of the compounds being cytotoxic at concentrations of up to 20 µM. Derivative 5f could be considered a valuable starting point for future antileishmanial drug development. The validation of a putative leishmanial InhA orthologue as a therapeutic target needs to be further investigated.

17.
Photochem Photobiol Sci ; 20(3): 369-378, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33721272

ABSTRACT

Tryptophan and tyrosine radical intermediates play crucial roles in many biological charge transfer processes. Particularly in flavoprotein photochemistry, short-lived reaction intermediates can be studied by the complementary techniques of ultrafast visible and infrared spectroscopy. The spectral properties of tryptophan radical are well established, and the formation of neutral tyrosine radicals has been observed in many biological processes. However, only recently, the formation of a cation tyrosine radical was observed by transient visible spectroscopy in a few systems. Here, we assigned the infrared vibrational markers of the cationic and neutral tyrosine radical at 1483 and 1502 cm-1 (in deuterated buffer), respectively, in a variant of the bacterial methyl transferase TrmFO, and in the native glucose oxidase. In addition, we studied a mutant of AppABLUF blue-light sensor domain from Rhodobacter sphaeroides in which only a direct formation of the neutral radical was observed. Our studies highlight the exquisite sensitivity of transient infrared spectroscopy to low concentrations of specific radicals.


Subject(s)
Flavoproteins/chemistry , Free Radicals/chemistry , Spectrophotometry, Infrared , Tyrosine/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cations/chemistry , Flavoproteins/metabolism , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Mutagenesis, Site-Directed , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/genetics , Photosynthetic Reaction Center Complex Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Rhodobacter sphaeroides/metabolism
18.
ACS Infect Dis ; 7(4): 746-758, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33710875

ABSTRACT

The enoyl-acyl carrier protein (ACP) reductase (ENR) is a key enzyme within the bacterial fatty-acid synthesis pathway. It has been demonstrated that small-molecule inhibitors carrying the diphenylether (DPE) scaffold bear a great potential for the development of highly specific and effective drugs against this enzyme class. Interestingly, different substitution patterns of the DPE scaffold have been shown to lead to varying effects on the kinetic and thermodynamic behavior toward ENRs from different organisms. Here, we investigated the effect of a 4'-pyridone substituent in the context of the slow tight-binding inhibitor SKTS1 on the inhibition of the Staphylococcus aureus enoyl-ACP-reductase saFabI and the closely related isoenzyme from Mycobacterium tuberculosis, InhA, and explored a new interaction site of DPE inhibitors within the substrate-binding pocket. Using high-resolution crystal structures of both complexes in combination with molecular dynamics (MD) simulations, kinetic measurements, and quantum mechanical (QM) calculations, we provide evidence that the 4'-pyridone substituent adopts different tautomeric forms when bound to the two ENRs. We furthermore elucidate the structural determinants leading to significant differences in the residence time of SKTS1 on both enzymes.


Subject(s)
Enzyme Inhibitors/pharmacology , Isoenzymes , Oxidoreductases/antagonists & inhibitors , Isomerism , Mycobacterium tuberculosis/enzymology , Staphylococcus aureus/enzymology
19.
ACS Infect Dis ; 6(10): 2592-2603, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32926768

ABSTRACT

The opportunistic human pathogen, A. baumannii, senses and responds to light using the blue light sensing A (BlsA) photoreceptor protein. BlsA is a blue-light-using flavin adenine dinucleotide (BLUF) protein that is known to regulate a wide variety of cellular functions through interactions with different binding partners. Using immunoprecipitation of tagged BlsA in A. baumannii lysates, we observed a number of proteins that interact with BlsA, including several transcription factors. In addition to a known binding partner, the iron uptake regulator Fur, we identified the biofilm response regulator BfmR as a putative BlsA-binding partner. Using microscale thermophoresis, we determined that both BfmR and Fur bind to BlsA with nanomolar binding constants. To better understand how BlsA interacts with and regulates these transcription factors, we solved the X-ray crystal structures of BlsA in both a ground (dark) state and a photoactivated light state. Comparison of the light- and dark-state structures revealed that, upon photoactivation, the two α-helices comprising the variable domain of BlsA undergo a distinct conformational change. The flavin-binding site, however, remains largely unchanged from dark to light. These structures, along with docking studies of BlsA and Fur, reveal key mechanistic details about how BlsA propagates the photoactivation signal between protein domains and on to its binding partner. Taken together, our structural and biophysical data provide important insights into how BlsA controls signal transduction in A. baumannii and provides a likely mechanism for blue-light-dependent modulation of biofilm formation and iron uptake.


Subject(s)
Acinetobacter baumannii , Bacterial Proteins/genetics , Biofilms , Humans , Iron , Light
20.
ACS Chem Biol ; 15(10): 2752-2765, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32880430

ABSTRACT

Light-activated protein domains provide a convenient, modular, and genetically encodable sensor for optogenetics and optobiology. Although these domains have now been deployed in numerous systems, the precise mechanism of photoactivation and the accompanying structural dynamics that modulate output domain activity remain to be fully elucidated. In the C-terminal light-oxygen-voltage (LOV) domain of plant phototropins (LOV2), blue light activation leads to formation of an adduct between a conserved Cys residue and the embedded FMN chromophore, rotation of a conserved Gln (Q513), and unfolding of a helix (Jα-helix) which is coupled to the output domain. In the present work, we focus on the allosteric pathways leading to Jα helix unfolding in Avena sativa LOV2 (AsLOV2) using an interdisciplinary approach involving molecular dynamics simulations extending to 7 µs, time-resolved infrared spectroscopy, solution NMR spectroscopy, and in-cell optogenetic experiments. In the dark state, the side chain of N414 is hydrogen bonded to the backbone N-H of Q513. The simulations predict a lever-like motion of Q513 after Cys adduct formation resulting in a loss of the interaction between the side chain of N414 and the backbone C═O of Q513, and formation of a transient hydrogen bond between the Q513 and N414 side chains. The central role of N414 in signal transduction was evaluated by site-directed mutagenesis supporting a direct link between Jα helix unfolding dynamics and the cellular function of the Zdk2-AsLOV2 optogenetic construct. Through this multifaceted approach, we show that Q513 and N414 are critical mediators of protein structural dynamics, linking the ultrafast (sub-ps) excitation of the FMN chromophore to the microsecond conformational changes that result in photoreceptor activation and biological function.


Subject(s)
Avena/chemistry , Glutamine/chemistry , Phototropins/metabolism , Protein Unfolding/radiation effects , Flavin Mononucleotide/metabolism , Hydrogen Bonding , Light , Membrane Proteins/metabolism , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Mutation , Optogenetics , Phototropins/genetics , Phototropins/radiation effects , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains , Protein Multimerization/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...