Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Nutr Metab Cardiovasc Dis ; 34(3): 771-782, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38161127

ABSTRACT

BACKGROUND AND AIMS: Obesity is the most common health issue in women of reproductive age, which profoundly affects maternal-fetal health. Despite progress in understanding key inflammatory and metabolic changes, the pathogenesis of the cardiovascular phenotype of obese pregnant women remains to be fully understood. This study aimed at: (i) evaluating the changes of the renin-angiotensin system (RAS) throughout pregnancy in obese vs normal weight (control) women, and (ii) evaluating the presence of any associations between maternal hemodynamic status and RAS changes. METHODS AND RESULTS: Thirty-eight normal weight and nineteen obese pregnant women were included. Clinical assessment, blood samples and maternal hemodynamic evaluation were performed at 12, 20, 30, and 36 weeks, while ultrasound assessment was scheduled at 20, 30, and 36 weeks of gestation. Measurements of sFlt-1, PlGF, Angiotensinogen, Renin, AngII, Ang1-7, ACE and ACE2 were performed by ELISA. Our data show that normotensive obese women had lower placental blood supply, as assessed by UV-Q and UV-Q/EFW, as compared to controls, and significantly higher levels of AngII and AngII/Ang1-7 ratio, which were inversely related to placental blood supply. CONCLUSIONS: Our study shows for the first time that normotensive obese women exhibited a significant progressive increase of AngII and AngII/Ang1-7 throughout pregnancy, which were inversely related to placental blood supply as assessed by UV-Q and UV-Q/EFW. Our data shed light on the early changes in pregnant obese women and suggest that RAS dysregulation is a prerequisite rather than a consequence of hypertensive disorders of pregnancy and other maternal neonatal complications.


Subject(s)
Angiotensinogen , Obesity, Maternal , Renin-Angiotensin System , Renin , Female , Humans , Infant, Newborn , Pregnancy , Enzyme-Linked Immunosorbent Assay , Longitudinal Studies , Placenta , Obesity, Maternal/blood , Angiotensinogen/blood , Renin/blood
2.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298261

ABSTRACT

Night shift work has been found to be associated with a higher risk of cardiovascular and cerebrovascular disease. One of the underlying mechanisms seems to be that shift work promotes hypertension, but results have been variable. This cross-sectional study was carried out in a group of internists with the aim of performing a paired analysis of 24 h blood pressure in the same physicians working a day shift and then a night shift, and a paired analysis of clock gene expression after a night of rest and a night of work. Each participant wore an ambulatory blood pressure monitor (ABPM) twice. The first time was for a 24 h period that included a 12 h day shift (08.00-20.00) and a night of rest. The second time was for a 30 h period that included a day of rest, a night shift (20.00-08.00), and a subsequent period of rest (08.00-14.00). Subjects underwent fasting blood sampling twice: after the night of rest and after the night shift. Night shift work significantly increased night systolic blood pressure (SBP), night diastolic blood pressure (DBP), and heart rate (HR) and decreased their respective nocturnal decline. Clock gene expression increased after the night shift. There was a direct association between night blood pressure and clock gene expression. Night shifts lead to an increase in blood pressure, non-dipping status, and circadian rhythm misalignment. Blood pressure is associated with clock genes and circadian rhythm misalignement.


Subject(s)
Blood Pressure Monitoring, Ambulatory , Hypertension , Humans , Blood Pressure/genetics , Blood Pressure Monitoring, Ambulatory/methods , Cross-Sectional Studies , Hypertension/genetics , Hypertension/complications , Circadian Rhythm/genetics , Gene Expression
3.
Int J Mol Sci ; 24(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37240116

ABSTRACT

Belonging to the family of Cyprinidae, the zebrafish is a small freshwater fish present in the rivers of Bangladesh, Northern India and Southern Nepal [...].


Subject(s)
Cyprinidae , Zebrafish , Humans , Animals , Rivers , Fresh Water , Models, Theoretical , India
4.
Front Endocrinol (Lausanne) ; 13: 912064, 2022.
Article in English | MEDLINE | ID: mdl-35909539

ABSTRACT

Background: The cause of short stature remains often unknown. The renin-angiotensin system contributes to growth regulation. Several groups reported that angiotensin-converting enzyme 2 (ACE2)-knockout mice weighed less than controls. Our case-control study aimed to investigate if children with short stature had reduced ACE2 expression as compared to controls, and its significance. Materials and Methods: children aged between 2 and 14 years were consecutively recruited in a University Hospital pediatric tertiary care center. Cases were children with short stature defined as height SD ≤ -2 diagnosed with growth hormone deficiency (GHD) or idiopathic short stature (ISS), before any treatment. Exclusion criteria were: acute diseases, kidney disease, endocrine or autoimmune disorders, precocious puberty, genetic syndromes, SGA history. ACE and ACE2 expression were measured in peripheral blood mononuclear cells, angiotensins were measured by ELISA. Results: Children with short stature displayed significantly lower ACE2 expression, being 0.40 fold induction (0.01-2.27) as compared to controls, and higher ACE/ACE2, with no differences between GHD and ISS. ACE2 expression was significantly and inversely associated with the risk of short stature, OR 0.26 (0.07-0.82), and it had a moderate accuracy to predict it, with an AUC of 0.73 (0.61-0.84). The cutoff of 0.45 fold induction of ACE2 expression was the value best predicting short stature, identifying correctly 70% of the children. Conclusions: Our study confirms the association between the reduction of ACE2 expression and growth retardation. Further studies are needed to determine its diagnostic implications.


Subject(s)
Angiotensin-Converting Enzyme 2 , Dwarfism, Pituitary , Human Growth Hormone , Angiotensin-Converting Enzyme 2/blood , Case-Control Studies , Dwarfism, Pituitary/blood , Dwarfism, Pituitary/genetics , Growth Disorders/diagnosis , Humans , Leukocytes, Mononuclear/metabolism
5.
Int J Endocrinol ; 2022: 9908450, 2022.
Article in English | MEDLINE | ID: mdl-35529082

ABSTRACT

Purpose: Obesity is a risk factor for severe coronavirus disease 2019 (COVID-19). Circulating adipokines have been associated with inflammatory burden and amplified or dysregulated immune responses. This study aimed to evaluate the discriminatory ability of adipokines to identify COVID-19 pneumonia and to assess disease severity. Methods: We conducted an observational case-control study, with a prospective design, and recruited patients with diagnosis of COVID-19 pneumonia (n = 48) and healthy controls (n = 36), who were matched by age, sex, and BMI. Leptin, adiponectin, IL-6, and TNF-α were measured by ELISA. Results: Patients with COVID-19 pneumonia had higher levels of leptin, lower adiponectin/leptin (Adpn/Lep) ratio, and higher expression of IL-6. Leptin had an acceptable discriminatory accuracy for COVID-19 pneumonia in patients with BMI >30 (AUC 0.74 [0.58, 0.90]) with a cutoff of 7852 pg/mL and it was associated with maximum respiratory support. By contrast, Adpn/Lep had an excellent discriminatory accuracy for COVID-19 pneumonia in patients with BMI <25 (AUC 0.9 [0.74, 1.06]) with a cutoff of 2.23. Conclusion: Our data indicate that high Adpn/Lep (>2.23) in lean patients is consistent with a state of good health, which decreases in case of inflammatory states, ranging from adipose tissue dysfunction with low-grade inflammation to COVID-19 pneumonia.

6.
Cancers (Basel) ; 14(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35406401

ABSTRACT

BACKGROUND: For hepatocellular carcinoma (HCC), effective therapeutic approaches are lacking. As aberrant gene methylation is a major contributor to HCC development, demethylating drugs such as 5-azacytidine (5-Aza) have been proposed. As most 5-Aza mechanisms of action are unknown, we investigated its phenotypic/molecular effects. METHODS: 5-Aza effects were examined in the human HCC cell lines JHH-6/HuH-7 and in the rat cell-line N1-S1. We also employed a xenograft mouse model (HuH-7), a zebrafish model (JHH-6), and an orthotopic syngeneic rat model (N1-S1) of HCC. RESULTS: 5-Aza downregulated cell viability/growth/migration/adhesion by upregulating miR-139-5p, which in turn downregulated ROCK2/cyclin D1/E2F1 and increased p27kip1, resulting in G1/G0 cell accumulation. Moreover, a decrease in cyclin B1 and an increase in p27kip1 led to G2/M accumulation. Finally, we observed a decrease in MMP-2 levels, a stimulator of HCC cell migration. Aza effects were confirmed in the mouse model; in the zebrafish model, we also demonstrated the downregulation of tumor neo-angiogenesis, and in the orthotopic rat model, we observed impaired N1-S1 grafting in a healthy liver. CONCLUSION: We demonstrate for the first time that 5-Aza can impair HCC development via upregulation of miR-139-5p, which in turn impairs the ROCK2/cyclin D1/E2F1/cyclin B1 pro-proliferative pathway and the ROCK2/MMP-2 pro-migratory pathway. Thus, we provide novel information about 5-Aza mechanisms of action and deepen the knowledge about the crosstalk among ROCK2/cyclin D1/E2F1/cyclin B1/p27kip1/MMP-2 in HCC.

7.
Nutr Metab Cardiovasc Dis ; 32(5): 1275-1282, 2022 05.
Article in English | MEDLINE | ID: mdl-35260304

ABSTRACT

BACKGROUND AND AIMS: The renin-angiotensin system (RAS), which is a key mediator of cardiovascular homeostasis, has two main axes. The classic one, including angiotensin-converting enzyme (ACE) and Angiotensin (Ang) II, promoting vasoconstriction, and the "alternative" one, including ACE2 and Ang1-7, with opposed actions to AngII. ACE2 has been identified as the main receptor of SARS-CoV2, whereby it enters the cells, leading to the downregulation of surface ACE2 and RAS tissue unbalance. Given that diabetes is associated with an increase in COVID-19 severity and death, we aimed at evaluating RAS expression in patients with type 1 diabetes (T1D). METHODS AND RESULTS: This is a case-control study comparing 39 T1D patients to 33 controls, with a median age of 29 and 32 years, and no comorbidities. ACE and ACE2 gene expression was assessed in peripheral blood mononuclear cells. T1D patients had higher ACE expression and circulating AngII, which were related to glucose levels. T1D patients had lower ACE2 expression. However, ACE2 expression was also related to the sex of participants, being higher in the female group. T1D women did not show the same increase of ACE2 expression that was seen in control women. CONCLUSION: T1D promotes the increase of ACE, AngII, and ACE/ACE2, which might contribute to the higher cardiovascular risk, as well as to severe tissue injury induced by SARS-CoV2 in these patients. The ratio ACE/ACE2 does not differ between men and women with T1D, which might explain why CVD or COVID-19 do not show substantial gender differences in these patients.


Subject(s)
Angiotensin-Converting Enzyme 2 , Diabetes Mellitus, Type 1 , Peptidyl-Dipeptidase A , Adult , Angiotensin II , Angiotensin-Converting Enzyme 2/genetics , COVID-19 , Case-Control Studies , Diabetes Mellitus, Type 1/diagnosis , Female , Humans , Leukocytes, Mononuclear/metabolism , Male , Peptidyl-Dipeptidase A/genetics , RNA, Viral/metabolism , Renin-Angiotensin System/physiology , SARS-CoV-2
8.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35216105

ABSTRACT

Calcium-dependent cytosolic phospholipase A2α (cPLA2α) had been previously found to be overexpressed by aortic valve interstitial cells (AVICs) subjected to in vitro calcific induction. Here, cPLA2α expression was immunohistochemically assayed in porcine aortic valve leaflets (iAVLs) that had undergone accelerated calcification subsequent to 2- to 28-day-long implantation in rat subcutis. A time-dependent increase in cPLA2α-positive AVICs paralleled mineralization progression depending on dramatic cell membrane degeneration with the release of hydroxyapatite-nucleating acidic lipid material, as revealed by immunogold particles decorating organelle membranes in 2d-iAVLs, as well as membrane-derived lipid byproducts in 7d- to 28d-iAVLs. Additional positivity was detected for (i) pro-inflammatory IL-6, mostly exhibited by rat peri-implant cells surrounding 14d- and 28d-iAVLs; (ii) calcium-binding osteopontin, with time-dependent increase and no ossification occurrence; (iii) anti-calcific fetuin-A, mostly restricted to blood plasma within vessels irrorating the connective envelopes of 28d-iAVLs; (iv) early apoptosis marker annexin-V, limited to sporadic AVICs in all iAVLs. No positivity was found for either apoptosis executioner cleaved caspase-3 or autophagy marker MAP1. In conclusion, cPLA2α appears to be a factor characterizing AVL calcification concurrently with a distinct still uncoded cell death form also in an animal model, as well as a putative target for the prevention and treatment of calcific valve diseases.


Subject(s)
Aortic Valve Stenosis/metabolism , Aortic Valve/metabolism , Calcium/metabolism , Group IV Phospholipases A2/metabolism , Osteogenesis/physiology , Animals , Apoptosis/physiology , Autophagy/physiology , Calcinosis/metabolism , Cells, Cultured , Disease Models, Animal , Interstitial Cells of Cajal/metabolism , Male , Rats , Rats, Sprague-Dawley , Swine
9.
Cell Death Dis ; 12(12): 1089, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34789726

ABSTRACT

TNF-related apoptosis-inducing ligand (TRAIL) is a protein that induces apoptosis in cancer cells but not in normal ones, where its effects remain to be fully understood. Previous studies have shown that in high-fat diet (HFD)-fed mice, TRAIL treatment reduced body weight gain, insulin resistance, and inflammation. TRAIL was also able to increase skeletal muscle free fatty acid oxidation. The aim of the present work was to evaluate TRAIL actions on skeletal muscle. Our in vitro data on C2C12 cells showed that TRAIL treatment significantly increased myogenin and MyHC and other hallmarks of myogenic differentiation, which were reduced by Dr5 (TRAIL receptor) silencing. In addition, TRAIL treatment significantly increased AKT phosphorylation, which was reduced by Dr5 silencing, as well as glucose uptake (alone and in combination with insulin). Our in vivo data showed that TRAIL increased myofiber size in HFD-fed mice as well as in db/db mice. This was associated with increased myogenin and PCG1α expression. In conclusion, TRAIL/DR5 pathway promotes AKT phosphorylation, skeletal muscle differentiation, and glucose uptake. These data shed light onto a pathway that might hold therapeutic potential not only for the metabolic disturbances but also for the muscle mass loss that are associated with diabetes.


Subject(s)
Glucose/metabolism , Muscle, Skeletal/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TNF-Related Apoptosis-Inducing Ligand/therapeutic use , Animals , Cell Differentiation , Humans , Male , Mice , Phosphorylation , TNF-Related Apoptosis-Inducing Ligand/pharmacology
10.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34451900

ABSTRACT

Hepatocellular carcinoma (HCC) is the sixth most common type of tumor and the second leading cause of tumor-related death worldwide. Liver cirrhosis is the most important predisposing factor for HCC. Available therapeutic approaches are not very effective, especially for advanced HCC, which is the most common form of the disease at diagnosis. New therapeutic strategies are therefore urgently needed. The use of animal models represents a relevant tool for preclinical screening of new molecules/strategies against HCC. However, several issues, including animal husbandry, limit the use of current models (rodent/pig). One animal model that has attracted the attention of the scientific community in the last 15 years is the zebrafish. This freshwater fish has several attractive features, such as short reproductive time, limited space and cost requirements for husbandry, body transparency and the fact that embryos do not show immune response to transplanted cells. To date, two different types of zebrafish models for HCC have been developed: the transgenic zebrafish and the zebrafish xenograft models. Since transgenic zebrafish models for HCC have been described elsewhere, in this review, we focus on the description of zebrafish xenograft models that have been used in the last five years to test new molecules/strategies against HCC.

11.
Cells ; 9(12)2020 12 01.
Article in English | MEDLINE | ID: mdl-33271969

ABSTRACT

C.difficile infection (CDI) is not a merely "gut-confined" disease as toxemia could drive the development of CDI-related extra-intestinal effects. These effects could explain the high CDI-associated mortality, not just justified by diarrhea and dehydration. Here, the extra-intestinal effects of toxin A (TcdA) and B (TcdB) produced by C. difficile have been studied in vivo using the zebrafish embryo model. Noteworthy, protective properties of human serum albumin (HSA) towards toxins-induced extra-intestinal effects were also addressed. Zebrafish embryos were treated with TcdA, TcdB and/or HSA at 24 h post-fertilization. Embryos were analyzed for 48 h after treatment to check vital signs and morphological changes. Markers related to cardio-vascular damage and inflammation were evaluated by Real-Time quantitative PCR and/or western blotting. Both toxins induced cardiovascular damage in zebrafish embryos by different mechanisms: (i) direct toxicity (i.e., pericardial edema, cardiac chambers enlargement, endothelial alteration); (ii) increased hormonal production and release (i.e., atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP)), (iii) alteration of the vascular system through the increase of the vascular endothelial growth factor (VEGF-A) levels, as well as of its receptors, (iv) pro-inflammatory response through high cytokines production (i.e., CXCL8, IL1B, IL6 and TNFα) and (v) cell-mediated damage due to the increase in neutrophils number. In addition to cardiovascular damage, we observe skin alteration and inflammation. Finally, our data indicate a protective effect of HSA toward the toxins induced extra-intestinal effects. Together, our findings can serve as a starting point for humans' studies to substantiate and understand the extra-intestinal effects observed in CDI patients.


Subject(s)
Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Clostridioides difficile/metabolism , Clostridium Infections/complications , Intestines/drug effects , Zebrafish/microbiology , Animals , Atrial Natriuretic Factor/metabolism , Caco-2 Cells , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/metabolism , Cell Line, Tumor , Cells, Cultured , Clostridium Infections/metabolism , Cytokines/metabolism , Disease Models, Animal , Enterotoxins/toxicity , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/chemically induced , Inflammation/metabolism , Intestines/microbiology , Natriuretic Peptide, Brain/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Serum Albumin, Human/metabolism , Vascular Endothelial Growth Factor A/metabolism , Zebrafish/metabolism
12.
Clin Sci (Lond) ; 134(17): 2337-2352, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32857135

ABSTRACT

BACKGROUND: TNF-related apoptosis-inducing ligand (TRAIL) has attracted attention not only as an anti-cancer agent, but also as a potential treatment for diabetes. Animal studies have shown that TRAIL delivery ameliorated glucose control in type 1 and type 2 diabetes. It is currently unknown whether TRAIL positive effects are maintained in more severe forms of type 2 diabetes, and whether they include renoprotection. Our study aimed at evaluating TRAIL effects in a severe form of type 2 diabetes with nephropathy. MATERIALS AND METHODS: A total of 20 db/db mice were treated with saline or TRAIL twice per week for 12 weeks. In parallel, renal tubular epithelial cells were cultured with TGF-ß1 in the presence and absence of TRAIL, with and without silencing TRAIL-specific receptor (DR5) and leptin receptor. RESULTS: TRAIL did not improve glucose control, but it significantly reduced circulating interleukin (IL)-6 and resistin. In the kidney, TRAIL treatment significantly ameliorated glomerular and tubular morphology with an improvement in kidney function, but no effect on proteinuria. Our in vitro studies on TGF-ß1-treated cells, showed that by binding to DR5, TRAIL rescued normal tubular cell morphology, increasing E-cadherin and reducing α-smooth muscle actin (SMA) expression, with no effects on cell viability. Interestingly, both in vivo and in vitro, TRAIL reduced the accumulation of the autophagy substrate p62. CONCLUSIONS: Our data confirm TRAIL protective effects against organ damage and shed light on to promising anti-fibrotic actions, which are independent of glucose control. TRAIL anti-fibrotic actions might be due to the rescue of autophagy in diabetes.


Subject(s)
Diabetic Nephropathies/pathology , Epithelial-Mesenchymal Transition , Kidney/pathology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Transforming Growth Factor beta/pharmacology , Animals , Body Weight/drug effects , Diabetic Nephropathies/metabolism , Epithelial-Mesenchymal Transition/drug effects , Feeding Behavior/drug effects , Fibrosis , Gene Expression Regulation/drug effects , Gene Silencing/drug effects , Glucose/metabolism , Humans , Inflammation/pathology , Kidney/drug effects , Kidney/physiopathology , Kidney Tubules/drug effects , Kidney Tubules/pathology , Kidney Tubules/physiopathology , Male , Mice , Protein Binding/drug effects , Rats , Receptors, Leptin/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Sequestosome-1 Protein/metabolism
13.
Int J Mol Sci ; 21(11)2020 May 29.
Article in English | MEDLINE | ID: mdl-32485823

ABSTRACT

BACKGROUND: It has been shown that sex affects immunity, including cytokine production. Given that atherosclerosis is an inflammatory disease promoted by specific cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, we aimed at evaluating whether sex could affect the levels of these proatherogenic cytokines in a group of healthy adults. In this analysis, we also included other cytokines and peptides that have been implicated in atherosclerosis development and progression. METHODS: A total of 104 healthy adults were recruited; we measured circulating levels of IL-1ß, IL-6, TNF-α, angiotensins and angiotensin-converting enzyme-2 (ACE2), as well as osteoprotegerin and receptor activator of nuclear factor κB ligand (RANKL). RESULTS: IL-1ß, IL-6, and TNF-α were significantly higher in men as compared to women. They were all associated with testosterone and the testosterone/estradiol ratio. They remained significantly associated with sex (but not with hormones) after being tested for potential confounders. CONCLUSIONS: Sex seems to influence the levels of proatherogenic cytokines. This is consistent not only with sex differences in vulnerability to infections but also with the higher cardiovascular risk exhibited by the male gender as compared to the female gender. Nevertheless, this association is only partly explained by hormone levels.


Subject(s)
Atherosclerosis/epidemiology , Interleukins/blood , RANK Ligand/blood , Tumor Necrosis Factor-alpha/blood , Adult , Angiotensin-Converting Enzyme 2/blood , Atherosclerosis/blood , Biomarkers/blood , Female , Humans , Male , Middle Aged , Sex Factors
14.
Magn Reson Med ; 84(1): 427-436, 2020 07.
Article in English | MEDLINE | ID: mdl-31788856

ABSTRACT

PURPOSE: To develop a novel approach to monitor lung ventilation/inflammation in cystic fibrosis (CF) patients. Lung assessment in CF patients is relevant given that most patients succumb to respiratory failure. Respiratory functional tests (forced expiratory volume in the first second; FEV1 ) and inflammatory markers are used to test pulmonary ventilation/inflammation, respectively. However, FEV1 is effort dependent and might be uncomfortable for CF patients. Furthermore, inflammatory marker detection is costly and not rapid. To overcome these limitations, we propose the measurement, by means of low field nuclear magnetic resonance, of the spin-spin relaxation time (T2m ) of water hydrogens present in CF patient sputum. In CF sputum, different biological components are pathologically increased and inversely related to lung functionality. Moreover, we showed that these components alter in a dose-dependent manner the T2m in synthetic CF sputum. METHODS: Sputum samples were obtained from 42 CF subjects by voluntary expectoration; FEV1 , C-reactive protein (CRP), blood neutrophil counts together with cytokine (tumor necrosis factor alpha [TNFα], interleukin [IL]-1ß, IL-4, and vascular endothelial growth factor) quantifications were then evaluated. RESULTS: In sputum samples, we observe that T2m directly correlates (rFEV1 = 0.44; P < 10-4 ; 169 samples) with FEV1 . Moreover, T2m inversely correlates with the circulating inflammation markers CRP/neutrophil number (rCRP = -0.44, P < 10-4 ; rNC = -0.37, P < 2 * 10-4 ; 103 and 86 samples, respectively) and with the sputum inflammatory cytokines TNFα/IL-ß1 (rTNFα = -0.72, P < 10-4 ; rIL-1ß = -0.685, P < 10-4 ; 27 samples). T2m variations also correspond to FEV1 values over time in defined patients. CONCLUSION: These findings, together with the fast, reliable, and simple determination of T2m , make our approach a novel tool potentially usable in the real world of CF patients.


Subject(s)
Cystic Fibrosis , Pneumonia , Biomarkers , C-Reactive Protein , Cystic Fibrosis/diagnostic imaging , Cytokines , Humans , Inflammation , Magnetic Resonance Spectroscopy , Sputum , Vascular Endothelial Growth Factor A
15.
Sci Rep ; 9(1): 13557, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537830

ABSTRACT

Among the multiple metabolic signals involved in the establishment of the hepatic zonation, oxygen could play a key role. Indeed, depending on hepatocyte position in the hepatic lobule, gene expression and metabolism are differently affected by the oxygen gradient present across the lobule. The aim of this study is to understand whether an oxygen gradient, generated in vitro in our developed device, is sufficient to instruct a functional metabolic zonation during the differentiation of human embryonic stem cells (hESCs) from endoderm toward terminally differentiated hepatocytes, thus mimicking the in vivo situation. For this purpose, a microfluidic device was designed for the generation of a stable oxygen gradient. The oxygen gradient was applied to differentiating hESCs at the pre-hepatoblast stage. The definitive endoderm and hepatic endoderm cells were characterized by the expression of the transcription factor SOX-17 and alpha-fetoprotein (AFP). Immature and mature hepatocytes were characterized by hepatocyte nuclear factor 4-alpha (HNF-4α) and albumin (ALB) expression and also analyzed for cytochrome P450 (CYP3A4) zonation and glycogen accumulation through PAS staining. Metabolic zonated genes expression was assessed through quantitative real time PCR. Application of the oxygen gradient during differentiation induced zonated glycogen storage, which was higher in the hepatocytes grown in high pO2 compared to those grown in low pO2. The mRNA levels of glutamine synthetase (GLUL), beta-catenin (CTNNB) and its direct target cyclin D1 (CCND1) showed significantly higher expression in the cells grown in low pO2 compared to those grown in high pO2. On the contrary, carbamoyl-phosphate synthetase 1 (CPS1), ALB, the proliferative marker ki67 (MKI67) and cyclin A (CCNA) resulted to be significantly higher expressed in cells cultured in high pO2 compared to those cultured in low pO2. These results indicate that the oxygen gradient generated in our device can instruct the establishment of a functional metabolic zonation in differentiating hESCs. The possibility to obtain differentiated hepatocytes in vitro may allow in the future to deepen our knowledge about the physiology/pathology of hepatocytes in relation to the oxygen content.


Subject(s)
Embryonic Stem Cells/cytology , Hepatocytes/cytology , Microfluidic Analytical Techniques/instrumentation , Oxygen/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Line , Cell Proliferation , Embryonic Stem Cells/metabolism , Gene Expression Profiling , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/metabolism , Humans , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , alpha-Fetoproteins/genetics , alpha-Fetoproteins/metabolism
16.
J Exp Clin Cancer Res ; 38(1): 313, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31311575

ABSTRACT

BACKGROUND: Breast cancer is the most common malignancy in women worldwide. Among the breast cancer subtypes, triple-negative breast cancer (TNBC) is the most aggressive and the most difficult to treat. One of the master regulators in TNBC progression is the architectural transcription factor HMGA1. This study aimed to further explore the HMGA1 molecular network to identify molecular mechanisms involved in TNBC progression. METHODS: RNA from the MDA-MB-231 cell line, silenced for HMGA1 expression, was sequenced and, with a bioinformatic analysis, molecular partners HMGA1 could cooperate with in regulating common downstream gene networks were identified. Among the putative partners, the FOXM1 transcription factor was selected. The relationship occurring between HMGA1 and FOXM1 was explored by qRT-PCR, co-immunoprecipitation and protein stability assays. Subsequently, the transcriptional activity of HMGA1 and FOXM1 was analysed by luciferase assay on the VEGFA promoter. The impact on angiogenesis was assessed in vitro, evaluating the tube formation ability of endothelial cells exposed to the conditioned medium of MDA-MB-231 cells silenced for HMGA1 and FOXM1 and in vivo injecting MDA-MB-231 cells, silenced for the two factors, in zebrafish larvae. RESULTS: Here, we discover FOXM1 as a novel molecular partner of HMGA1 in regulating a gene network implicated in several breast cancer hallmarks. HMGA1 forms a complex with FOXM1 and stabilizes it in the nucleus, increasing its transcriptional activity on common target genes, among them, VEGFA, the main inducer of angiogenesis. Furthermore, we demonstrate that HMGA1 and FOXM1 synergistically drive breast cancer cells to promote tumor angiogenesis both in vitro in endothelial cells and in vivo in a zebrafish xenograft model. Moreover, using a dataset of breast cancer patients we show that the co-expression of HMGA1, FOXM1 and VEGFA is a negative prognostic factor of distant metastasis-free survival and relapse-free survival. CONCLUSIONS: This study reveals FOXM1 as a crucial interactor of HMGA1 and proves that their cooperative action supports breast cancer aggressiveness, by promoting tumor angiogenesis. Therefore, the possibility to target HMGA1/FOXM1 in combination should represent an attractive therapeutic option to counteract breast cancer angiogenesis.


Subject(s)
Cell Nucleus/metabolism , Forkhead Box Protein M1/metabolism , HMGA1a Protein/metabolism , Triple Negative Breast Neoplasms/genetics , Vascular Endothelial Growth Factor A/genetics , Animals , Cell Line, Tumor , Culture Media, Conditioned/pharmacology , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Forkhead Box Protein M1/chemistry , Forkhead Box Protein M1/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Silencing , HEK293 Cells , HMGA1a Protein/genetics , Humans , Prognosis , Promoter Regions, Genetic , Protein Stability , Sequence Analysis, RNA , Survival Analysis , Transcription, Genetic , Triple Negative Breast Neoplasms/metabolism , Zebrafish
18.
J Infect Dis ; 218(9): 1424-1435, 2018 09 22.
Article in English | MEDLINE | ID: mdl-29868851

ABSTRACT

Background: The pathogenic effects of Clostridium difficile are primarily attributable to the production of the large protein toxins (C difficile toxins [Tcd]) A (TcdA) and B (TcdB). These toxins monoglucosylate Rho GTPases in the cytosol of host cells, causing destruction of the actin cytoskeleton with cytotoxic effects. Low human serum albumin (HSA) levels indicate a higher risk of acquiring and developing a severe C difficile infection (CDI) and are associated with recurrent and fatal disease. Methods: We used a combined approach based on docking simulation and biochemical analyses that were performed in vitro on purified proteins and in human epithelial colorectal adenocarcinoma cells (Caco-2), and in vivo on stem cell-derived human intestinal organoids and zebrafish embryos. Results: Our results show that HSA specifically binds via its domain II to TcdA and TcdB and thereby induces their autoproteolytic cleavage at physiological concentrations. This process impairs toxin internalization into the host cells and reduces the toxin-dependent glucosylation of Rho proteins. Conclusions: Our data provide evidence for a specific HSA-dependent self-defense mechanism against C difficile toxins and provide an explanation for the clinical correlation between CDI severity and hypoalbuminemia.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Clostridioides difficile/metabolism , Enterotoxins/metabolism , Serum Albumin, Human/metabolism , Animals , Caco-2 Cells , Cell Line, Tumor , Humans , Zebrafish/metabolism
19.
Cell Death Differ ; 25(7): 1224-1238, 2018 07.
Article in English | MEDLINE | ID: mdl-29568059

ABSTRACT

The tumor suppressor DAB2IP contributes to modulate the network of information established between cancer cells and tumor microenvironment. Epigenetic and post-transcriptional inactivation of this protein is commonly observed in multiple human malignancies, and can potentially favor progression of tumors driven by a variety of genetic mutations. Performing a high-throughput screening of a large collection of human microRNA mimics, we identified miR-149-3p as a negative post-transcriptional modulator of DAB2IP. By efficiently downregulating DAB2IP, this miRNA enhances cancer cell motility and invasiveness, facilitating activation of NF-kB signaling and promoting expression of pro-inflammatory and pro-angiogenic factors. In addition, we found that miR-149-3p secreted by prostate cancer cells induces DAB2IP downregulation in recipient vascular endothelial cells, stimulating their proliferation and motility, thus potentially remodeling the tumor microenvironment. Finally, we found that inhibition of endogenous miR-149-3p restores DAB2IP activity and efficiently reduces tumor growth and dissemination of malignant cells. These observations suggest that miR-149-3p can promote cancer progression via coordinated inhibition of DAB2IP in tumor cells and in stromal cells.


Subject(s)
MicroRNAs/metabolism , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , RNA, Neoplasm/metabolism , Signal Transduction , Tumor Microenvironment , ras GTPase-Activating Proteins/metabolism , Animals , HCT116 Cells , HeLa Cells , Hep G2 Cells , Human Umbilical Vein Endothelial Cells , Humans , Male , MicroRNAs/genetics , Neoplasm Proteins/genetics , PC-3 Cells , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Neoplasm/genetics , Zebrafish , ras GTPase-Activating Proteins/genetics
20.
Molecules ; 23(4)2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29597300

ABSTRACT

Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD) and particularly small interfering RNAs (siRNAs), are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC), a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work.


Subject(s)
Carcinoma, Hepatocellular , Drug Delivery Systems/methods , Liver Neoplasms , Models, Biological , Polymers , RNA, Small Interfering , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Models, Chemical , Polymers/chemistry , Polymers/therapeutic use , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...