Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38366732

ABSTRACT

Infection with Mycobacterium tuberculosis (Mtb) in people with HIV (PWH) is associated with depletion of Mtb-specific CD4 T cell responses, increased risk of progression to active tuberculosis (TB) disease, and increased immune activation. Although higher HIV viral loads have been reported in Mtb/HIV co-infection, the extent to which Mtb infection and TB disease impact the frequency and phenotype of HIV-specific T cell responses has not been well described. We enrolled a cohort of PWH in Kenya across a spectrum of Mtb infection states, including those with no evidence of Mtb infection, latent Mtb infection (LTBI), and active pulmonary TB disease, and evaluated the frequency, immune activation, and cytotoxicity phenotype of HIV-specific CD4 and CD8 T cell responses in peripheral blood by flow cytometry. We found evidence of depletion of HIV-specific CD4 and CD8 T cells in people with TB, but not with LTBI. Expression of the immune activation markers human leukocyte antigen-DR isotype (HLA-DR) and Ki67 and of the cytotoxic molecules granzyme B and perforin were increased in total CD4 and CD8 T cell populations in individuals with TB, although expression of these markers by HIV-specific CD4 and CD8 T cells did not differ by Mtb infection status. These data suggest that TB is associated with overall increased T cell activation and cytotoxicity and with depletion of HIV-specific CD4 and CD8 T cells, which may contribute to further impairment of T cell-mediated immune control of HIV replication in the setting of TB.

2.
PLoS Negl Trop Dis ; 14(10): e0008764, 2020 10.
Article in English | MEDLINE | ID: mdl-33044959

ABSTRACT

Schistosoma mansoni (SM) is a parasitic helminth that infects over 200 million people and causes severe morbidity. It undergoes a multi-stage life cycle in human hosts and as such stimulates a stage-specific immune response. The human T cell response to SM is complex and varies throughout the life cycle of SM. Relative to the wealth of information regarding the immune response to SM eggs, little is known about the immune response to the adult worm. In addition, while a great deal of research has uncovered mechanisms by which co-infection with helminths modulates immunity to other pathogens, there is a paucity of data on the effect of pathogens on immunity to helminths. As such, we sought to characterize the breadth of the T cell response to SM and determine whether co-infection with Mycobacterium tuberculosis (Mtb) modifies SM-specific T cell responses in a cohort of HIV-uninfected adults in Kisumu, Kenya. SM-infected individuals were categorized into three groups by Mtb infection status: active TB (TB), Interferon-γ Release Assay positive (IGRA+), and Interferon-γ Release Assay negative (IGRA-). U.S. adults that were seronegative for SM antibodies served as naïve controls. We utilized flow cytometry to characterize the T cell repertoire to SM egg and worm antigens. We found that T cells had significantly higher proliferation and cytokine production in response to worm antigen than to egg antigen. The T cell response to SM was dominated by γδ T cells that produced TNFα and IFNγ. Furthermore, we found that in individuals infected with Mtb, γδ T cells proliferated less in response to SM worm antigens and had higher IL-4 production compared to naïve controls. Together these data demonstrate that γδ T cells respond robustly to SM worm antigens and that Mtb infection modifies the γδ T cell response to SM.


Subject(s)
Mycobacterium tuberculosis/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , T-Lymphocytes/immunology , Tuberculosis/immunology , Adult , Animals , Antibodies, Helminth , Coinfection/immunology , Coinfection/microbiology , Coinfection/parasitology , Female , Humans , Interferon-gamma/immunology , Interleukin-4/immunology , Kenya , Male , Middle Aged , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/physiology , Schistosoma mansoni/genetics , Schistosoma mansoni/physiology , Schistosomiasis mansoni/parasitology , Tuberculosis/microbiology
3.
Article in English | MEDLINE | ID: mdl-32266170

ABSTRACT

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), which leads to an estimated 1. 5 million deaths worldwide each year. Although the immune correlates of protection against Mtb infection and TB disease have not been well-defined, natural killer (NK) cells are increasingly recognized as a key component of the innate immune response to Mtb and as a link between innate and adaptive immunity. In this study, we evaluated NK cell phenotypic and functional profiles in QuantiFERON-TB (QFT)+ and QFT- adults in a TB endemic setting in Kisumu, Kenya, and compared their NK cell responses to those of Mtb-naïve healthy adult controls in the U.S. We used flow cytometry to define the phenotypic profile of NK cells and identified distinct CD56dim NK cell phenotypes that differentiated the Kenyan and U.S. groups. Additionally, among Kenyan participants, NK cells from QFT+ individuals with latent Mtb infection (LTBI) were characterized by significant downregulation of the natural cytotoxicity receptor NKp46 and the inhibitory receptor TIGIT, compared with QFT- individuals. Moreover, the distinct CD56dim phenotypic profiles in Kenyan individuals correlated with dampened NK cell responses to tumor cells and diminished activation, degranulation, and cytokine production following stimulation with Mtb antigens, compared with Mtb-naïve U.S. healthy adult controls. Taken together, these data provide evidence that the phenotypic and functional profiles of NK cells are modified in TB endemic settings and will inform future studies aimed at defining NK cell-mediated immune correlates that may be protective against acquisition of Mtb infection and progression to TB disease.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Adult , Humans , Kenya/epidemiology , Killer Cells, Natural , Phenotype , Tuberculosis/epidemiology
4.
Front Immunol ; 11: 127, 2020.
Article in English | MEDLINE | ID: mdl-32117277

ABSTRACT

Mycobacterium tuberculosis (Mtb) is a serious public health concern, infecting a quarter of the world and leading to 10 million cases of tuberculosis (TB) disease and 1. 5 million deaths annually. An effective type 1 CD4 T cell (TH1) immune response is necessary to control Mtb infection and defining factors that modulate Mtb-specific TH1 immunity is important to better define immune correlates of protection in Mtb infection. Helminths stimulate type 2 (TH2) immune responses, which antagonize TH1 cells. As such, we sought to evaluate whether co-infection with the parasitic helminth Schistosoma mansoni (SM) modifies CD4 T cell lineage profiles in a cohort of HIV-uninfected adults in Kisumu, Kenya. Individuals were categorized into six groups by Mtb and SM infection status: healthy controls (HC), latent Mtb infection (LTBI) and active tuberculosis (TB), with or without concomitant SM infection. We utilized flow cytometry to evaluate the TH1/TH2 functional and phenotypic lineage state of total CD4 T cells, as well as CD4 T cells specific for the Mtb antigens CFP-10 and ESAT-6. Total CD4 T cell lineage profiles were similar between SM+ and SM- individuals in all Mtb infection groups. Furthermore, in both LTBI and TB groups, SM infection did not impair Mtb-specific TH1 cytokine production. In fact, SM+ LTBI individuals had higher frequencies of IFNγ+ Mtb-specific CD4 T cells than SM- LTBI individuals. Mtb-specific CD4 T cells were characterized by expression of both classical TH1 markers, CXCR3 and T-bet, and TH2 markers, CCR4, and GATA3. The expression of these markers was similar between SM+ and SM- individuals with LTBI. However, SM+ individuals with active TB had significantly higher frequencies of GATA3+ CCR4+ TH1 cytokine+ Mtb-specific CD4 T cells, compared with SM- TB individuals. Together, these data indicate that Mtb-specific TH1 cytokine production capacity is maintained in SM-infected individuals, and that Mtb-specific TH1 cytokine+ CD4 T cells can express both TH1 and TH2 markers. In high pathogen burden settings where co-infection is common and reoccurring, plasticity of antigen-specific CD4 T cell responses may be important in preserving Mtb-specific TH1 responses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Coinfection/immunology , Schistosomiasis mansoni/immunology , Th1 Cells/immunology , Tuberculosis/immunology , Adult , Female , Humans , Kenya , Latent Tuberculosis/immunology , Male , Middle Aged , Th2 Cells/immunology , Young Adult
5.
Front Immunol ; 10: 1983, 2019.
Article in English | MEDLINE | ID: mdl-31497018

ABSTRACT

Nearly a quarter of the global population is infected with Mycobacterium tuberculosis (Mtb), with 10 million people developing active tuberculosis (TB) annually. Co-infection with human immunodeficiency virus (HIV) has long been recognized as a significant risk factor for progression to TB disease, yet the mechanisms whereby HIV impairs T cell-mediated control of Mtb infection remain poorly defined. We hypothesized that HIV infection may promote upregulation of inhibitory receptors on Mtb-specific CD4 T cells, a mechanism that has been associated with antigen-specific T cell dysfunction in chronic infections. Using cohorts of HIV-infected and HIV-uninfected individuals with latent Mtb infection (LTBI) and with active TB disease, we stimulated peripheral blood mononuclear cells (PBMC) for 6 hours with Mtb peptide pools and evaluated co-expression profiles of the inhibitory receptors BTLA, CTLA-4, and PD-1 on IFN-γ+/TNF-α+ Mtb-specific CD4 T cells. Mtb-specific CD4 T cells in all participant groups expressed predominately either one or no inhibitory receptors, unlike cytomegalovirus- and HIV-specific CD4 T cells circulating in the same individuals, which were predominately CTLA-4+PD-1+. There were no significant differences in inhibitory receptor expression profiles of Mtb-specific CD4 T cells between HIV-uninfected and HIV-infected individuals with LTBI. Surprisingly, BTLA expression, both alone and in combination with CTLA-4 and PD-1, was markedly downregulated on Mtb-specific CD4 T cells in HIV-infected individuals with active TB. Together, these data provide novel evidence that the majority of Mtb-specific CD4 T cells do not co-express multiple inhibitory receptors, regardless of HIV infection status; moreover, they highlight a previously unrecognized role of BTLA expression on Mtb-specific CD4 T cells that could be further explored as a potential biomarker of Mtb infection status, particularly in people living with HIV, the population at greatest risk for development of active TB disease.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , Mycobacterium tuberculosis/immunology , Receptors, Immunologic/immunology , Tuberculosis/immunology , Adult , Down-Regulation , Female , Humans , Male , Young Adult
6.
J Immunol ; 200(8): 3008-3019, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29540577

ABSTRACT

Antigen-specific CD4 and CD8 T cells are important components of the immune response to Mycobacterium tuberculosis, yet little information is currently known regarding how the breadth, specificity, phenotype, and function of M. tuberculosis-specific T cells correlate with M. tuberculosis infection outcome in humans. To facilitate evaluation of human M. tuberculosis-specific T cell responses targeting multiple different Ags, we sought to develop a high throughput and reproducible T cell response spectrum assay requiring low blood sample volumes. We describe here the optimization and standardization of a microtiter plate-based, diluted whole blood stimulation assay utilizing overlapping peptide pools corresponding to a functionally diverse panel of 60 M. tuberculosis Ags. Using IFN-γ production as a readout of Ag specificity, the assay can be conducted using 50 µl of blood per test condition and can be expanded to accommodate additional Ags. We evaluated the intra- and interassay variability, and implemented testing of the assay in diverse cohorts of M. tuberculosis-unexposed healthy adults, foreign-born adults with latent M. tuberculosis infection residing in the United States, and tuberculosis household contacts with latent M. tuberculosis infection in a tuberculosis-endemic setting in Kenya. The M. tuberculosis-specific T cell response spectrum assay further enhances the immunological toolkit available for evaluating M. tuberculosis-specific T cell responses across different states of M. tuberculosis infection, and can be readily implemented in resource-limited settings. Moreover, application of the assay to longitudinal cohorts will facilitate evaluation of treatment- or vaccine-induced changes in the breadth and specificity of Ag-specific T cell responses, as well as identification of M. tuberculosis-specific T cell responses associated with M. tuberculosis infection outcomes.


Subject(s)
Hematologic Tests/methods , High-Throughput Screening Assays/methods , T-Lymphocytes/immunology , Tuberculosis/blood , Tuberculosis/immunology , Cross-Sectional Studies , Humans , Immunologic Techniques/methods , Longitudinal Studies , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...