Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 266(5184): 398-404, 1994 Oct 21.
Article in English | MEDLINE | ID: mdl-17816682

ABSTRACT

Simultaneous in situ measurements of the concentrations of OH, HO(2), ClO, BrO, NO, and NO(2) demonstrate the predominance of odd-hydrogen and halogen free-radical catalysis in determining the rate of removal of ozone in the lower stratosphere during May 1993. A single catalytic cycle, in which the rate-limiting step is the reaction of HO(2) with ozone, accounted for nearly one-half of the total O(3) removal in this region of the atmosphere. Halogen-radical chemistry was responsible for approximately one-third of the photochemical removal of O(3); reactions involving BrO account for one-half of this loss. Catalytic destruction by NO(2), which for two decades was considered to be the predominant loss process, accounted for less than 20 percent of the O(3) removal. The measurements demonstrate quantitatively the coupling that exists between the radical families. The concentrations of HO(2) and ClO are inversely correlated with those of NO and NO(2). The direct determination of the relative importance of the catalytic loss processes, combined with a demonstration of the reactions linking the hydrogen, halogen, and nitrogen radical concentrations, shows that in the air sampled the rate of O(3) removal was inversely correlated with total NOx, loading.

2.
Science ; 261(5125): 1130-4, 1993 Aug 27.
Article in English | MEDLINE | ID: mdl-17790344

ABSTRACT

Simultaneous in situ measurements of hydrochloric acid (HCl) and chlorine monoxide (ClO) in the Arctic winter vortex showed large HCl losses, of up to 1 part per billion by volume (ppbv), which were correlated with high ClO levels of up to 1.4 ppbv. Air parcel trajectory analysis identified that this conversion of inorganic chlorine occurred at air temperatures of less than 196 +/- 4 kelvin. High ClO was always accompanied by loss of HCI mixing ratios equal to (1/2)(ClO + 2Cl(2)O(2)). These data indicate that the heterogeneous reaction HCl + ClONO(2) --> Cl(2) + HNO(3) on particles of polar stratospheric clouds establishes the chlorine partitioning, which, contrary to earlier notions, begins with an excess of ClONO(2), not HCl.

3.
Science ; 261(5125): 1134-6, 1993 Aug 27.
Article in English | MEDLINE | ID: mdl-17790345

ABSTRACT

In situ measurements of chlorine monoxide (ClO) at mid- and high northern latitudes are reported for the period October 1991 to February 1992. As early as mid-December and throughout the winter, significant enhancements of this ozone-destroying radical were observed within the polar vortex shortly after temperatures dropped below 195 k. Decreases in ClO observed in February were consistent with the rapid formation of chlorine nitrate (ClONO(2)) by recombination of ClO with nitrogen dioxide (NO(2)) released photochemically from nitric acid (HNO(3)). Outside the vortex, ClO abundances were higher than in previous years as a result of NOx suppression by heterogeneous reactions on sulfate aerosols enhanced by the eruption of Mount Pinatubo.

4.
Science ; 261(5125): 1140-3, 1993 Aug 27.
Article in English | MEDLINE | ID: mdl-17790347

ABSTRACT

Highly resolved aerosol size distributions measured from high-altitude aircraft can be used to describe the effect of the 1991 eruption of Mount Pinatubo on the stratospheric aerosol. In some air masses, aerosol mass mixing ratios increased by factors exceeding 100 and aerosol surface area concentrations increased by factors of 30 or more. Increases in aerosol surface area concentration were accompanied by increases in chlorine monoxide at mid-latitudes when confounding factors were controlled. This observation supports the assertion that reactions occurring on the aerosol can increase the fraction of stratospheric chlorine that occurs in ozone-destroying forms.

5.
Science ; 252(5010): 1260-6, 1991 May 31.
Article in English | MEDLINE | ID: mdl-17842951

ABSTRACT

The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (HCl and ClONO(2)) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl(2)O(2) throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO(3), and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.

6.
Science ; 251(4989): 39-46, 1991 Jan 04.
Article in English | MEDLINE | ID: mdl-17778601

ABSTRACT

How strong is the case linking global release of chlorofluorocarbons to episodic disappearance of ozone from the Antarctic stratosphere each austral spring? Three lines of evidence defining a link are (i) observed containment in the vortex of ClO concentrations two orders of magnitude greater than normal levels; (ii) in situ observations obtained during ten high-altitude aircraft flights into the vortex as the ozone hole was forming that show a decrease in ozone concentrations as ClO concentrations increased; and (iii) a comparison between observed ozone loss rates and those predicted with the use of absolute concentrations of ClO and BrO, the rate-limiting radicals in an array of proposed catalytic cycles. Recent advances in our understanding of the kinetics, photochemistry, and structural details of key intermediates in these catalytic cycles as well as an improved absolute calibration for ClO and BrO concentrations at the temperatures and pressures encountered in the lower antarctic stratosphere have been essential for defining the link.

7.
Science ; 242(4878): 558-62, 1988 Oct 28.
Article in English | MEDLINE | ID: mdl-17815896

ABSTRACT

In order to test photochemical theories linking chlorofluorocarbon derivatives to ozone(O(3)) depletion at high latitudes in the springtime, several related atmospheric species, including O(3), chlorine monoxide(ClO), and bromine monoxide (BrO) were measured in the lower stratosphere with instruments mounted on the NASA ER-2 aircraft on 13 February 1988. The flight path from Moffett Field, California (37 degrees N, 121 degrees W), to Great Slave Lake, Canada (61 degrees N, 115 degrees W), extended to the center of the polar jet associated with but outside of the Arctic vortex, in which the abundance of O(3) was twice its mid-latitude value, whereas BrO levels were 5 parts per trillion by volume (pptv) between 18 and 21 kilometers, and 2.4 pptv below that altitude. The ClO mixing ratio was as much as 65 pptv at 60 degrees N latitude at an altitude of 20 kilometers, and was enhanced over mid-latitude values by a factor of 3 to 5 at altitudes above 18 kilometers and by as much as a factor of 40 at altitudes below 17 kilometers. Levels of ClO and O(3) were highly correlated on all measured distance scales, and both showed an abrupt change in character at 54 degrees N latitude. The enhancement of ClO abundance north of 54 degrees N was most likely caused by low nitrogen dioxide levels in the flight path.

SELECTION OF CITATIONS
SEARCH DETAIL
...