Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1396965, 2024.
Article in English | MEDLINE | ID: mdl-38982992

ABSTRACT

Adipose tissues, particularly beige and brown adipose tissue, play crucial roles in energy metabolism. Brown adipose tissues' thermogenic capacity and the appearance of beige cells within white adipose tissue have spurred interest in their metabolic impact and therapeutic potential. Brown and beige fat cells, activated by environmental factors like cold exposure or by pharmacology, share metabolic mechanisms that drive non-shivering thermogenesis. Understanding these two cell types requires advanced, yet broadly applicable in vitro models that reflect the complex microenvironment and vasculature of adipose tissues. Here we present mouse vascularized adipose spheroids of the stromal vascular microenvironment from inguinal white adipose tissue, a tissue with 'beiging' capacity in mice and humans. We show that adding a scaffold improves vascular sprouting, enhances spheroid growth, and upregulates adipogenic markers, thus reflecting increased adipocyte maturity. Transcriptional profiling via RNA sequencing revealed distinct metabolic pathways upregulated in our vascularized adipose spheroids, with increased expression of genes involved in glucose metabolism, lipid metabolism, and thermogenesis. Functional assessment demonstrated increased oxygen consumption in vascularized adipose spheroids compared to classical 2D cultures, which was enhanced by ß-adrenergic receptor stimulation correlating with elevated ß-adrenergic receptor expression. Moreover, stimulation with the naturally occurring adipokine, FGF21, induced Ucp1 mRNA expression in the vascularized adipose spheroids. In conclusion, vascularized inguinal white adipose tissue spheroids provide a physiologically relevant platform to study how the stromal vascular microenvironment shapes adipocyte responses and influence activated thermogenesis in beige adipocytes.


Subject(s)
Spheroids, Cellular , Thermogenesis , Animals , Mice , Spheroids, Cellular/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/cytology , Mice, Inbred C57BL , Male , Adipocytes/metabolism , Adipocytes/cytology , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/cytology , Cells, Cultured , Adipocytes, Beige/metabolism , Adipocytes, Beige/cytology , Energy Metabolism , Adipogenesis/physiology , Microphysiological Systems
2.
Nat Metab ; 6(6): 1053-1075, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684889

ABSTRACT

Promoting brown adipose tissue (BAT) activity innovatively targets obesity and metabolic disease. While thermogenic activation of BAT is well understood, the rheostatic regulation of BAT to avoid excessive energy dissipation remains ill-defined. Here, we demonstrate that adenylyl cyclase 3 (AC3) is key for BAT function. We identified a cold-inducible promoter that generates a 5' truncated AC3 mRNA isoform (Adcy3-at), whose expression is driven by a cold-induced, truncated isoform of PPARGC1A (PPARGC1A-AT). Male mice lacking Adcy3-at display increased energy expenditure and are resistant to obesity and ensuing metabolic imbalances. Mouse and human AC3-AT are retained in the endoplasmic reticulum, unable to translocate to the plasma membrane and lack enzymatic activity. AC3-AT interacts with AC3 and sequesters it in the endoplasmic reticulum, reducing the pool of adenylyl cyclases available for G-protein-mediated cAMP synthesis. Thus, AC3-AT acts as a cold-induced rheostat in BAT, limiting adverse consequences of cAMP activity during chronic BAT activation.


Subject(s)
Adenylyl Cyclases , Adipose Tissue, Brown , Cold Temperature , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Adipose Tissue, Brown/metabolism , Animals , Mice , Male , Humans , Thermogenesis/genetics , Energy Metabolism , Cyclic AMP/metabolism , Mice, Knockout
3.
Biochim Biophys Acta Mol Cell Res ; 1870(8): 119557, 2023 12.
Article in English | MEDLINE | ID: mdl-37549739

ABSTRACT

Activation of c-Met signaling is associated with an aggressive phenotype and poor prognosis in hepatocellular carcinoma (HCC); however, its contribution to organ preference in metastasis remains unclear. In this study, using a Lab on a Chip device, we defined the role of aberrant c-Met activation in regulating the extravasation and homing capacity of HCC cells. Our studies showed that (i) c-Met overexpression and activation direct HCC cells preferentially towards the hepatocytes-enriched microenvironment, and (ii) blockage of c-Met phosphorylation by a small molecule inhibitor attenuated extravasation and homing capacity of HCC cells. These results, thus, demonstrate the role of c-Met signaling in regulating the colonization of HCC cells preferentially in the liver.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Hepatocytes , Cell Line , Tumor Microenvironment
4.
Sci Rep ; 11(1): 11376, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059694

ABSTRACT

Hepatocellular carcinoma (HCC) is strongly associated with metabolic dysregulations/deregulations and hyperglycemia is a common metabolic disturbance in metabolic diseases. Hyperglycemia is defined to promote epithelial to mesenchymal transition (EMT) of cancer cells in various cancers but its molecular contribution to HCC progression and aggressiveness is relatively unclear. In this study, we analyzed the molecular mechanisms behind the hyperglycemia-induced EMT in HCC cell lines. Here, we report that high glucose promotes EMT through activating c-Met receptor tyrosine kinase via promoting its ligand-independent homodimerization. c-Met activation is critical for high glucose induced acquisition of mesenchymal phenotype, survival under high glucose stress and reprogramming of cellular metabolism by modulating glucose metabolism gene expression to promote aggressiveness in HCC cells. The crucial role of c-Met in high glucose induced EMT and aggressiveness may be the potential link between metabolic syndrome-related hepatocarcinogenesis and/or HCC progression. Considering c-Met inhibition in hyperglycemic patients would be an important complementary strategy for therapy that favors sensitization of HCC cells to therapeutics.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Glucose/metabolism , Liver Neoplasms/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/drug effects , Dimerization , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Glucose/administration & dosage , Glucose/toxicity , Glycolysis , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Neoplasm Invasiveness , Signal Transduction/drug effects
5.
Cell Commun Signal ; 18(1): 110, 2020 07 11.
Article in English | MEDLINE | ID: mdl-32650779

ABSTRACT

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) are both reversible processes, and regulation of phenotypical transition is very important for progression of several cancers including hepatocellular carcinoma (HCC). Recently, it is defined that cancer cells can attain a hybrid epithelial/mesenchymal (hybrid E/M) phenotype. Cells with hybrid E/M phenotype comprise mixed epithelial and mesenchymal properties, they can be more resistant to therapeutics and also more capable of initiating metastatic lesions. However, the mechanisms regulating hybrid E/M in HCC are not well described yet. In this study, we investigated the role of the potential crosstalk between lncRNA HOTAIR and c-Met receptor tyrosine kinase, which are two essential regulators of EMT and MET, in acquiring of hybrid E/M phenotype in HCC. METHODS: Expression of c-Met and lncRNA HOTAIR were defined in HCC cell lines and patient tissues through HCC progression. lncRNA HOTAIR was overexpressed in SNU-449 cells and its effects on c-Met signaling were analyzed. c-Met was overexpressed in SNU-398 cells and its effect on HOTAIR expression was analyzed. Biological significance of HOTAIR/c-Met interplay was defined in means of adhesion, proliferation, motility behavior, invasion, spheroid formation and metastatic ability. Effect of ectopic lncRNA HOTAIR expression on phenotype was defined with investigation of molecular epithelial and mesenchymal traits. RESULTS: In vitro and in vivo experiments verified the pivotal role of lncRNA HOTAIR in acquisition of hybrid E/M phenotype through modulating expression and activation of c-Met and its membrane co-localizing partner Caveolin-1, and membrane organization to cope with the rate limiting steps of metastasis such as survival in adhesion independent microenvironment, escaping from anoikis and resisting to fluidic shear stress (FSS) in HCC. CONCLUSIONS: Our work provides the first evidence suggesting a role for lncRNA HOTAIR in the modulation of c-Met to promote hybrid E/M phenotype. The balance between lncRNA HOTAIR and c-Met might be critical for cell fate decision and metastatic potential of HCC cells. Video Abstract.


Subject(s)
Carcinoma, Hepatocellular/genetics , Down-Regulation/genetics , Epithelium/pathology , Liver Neoplasms/genetics , Mesoderm/pathology , Proto-Oncogene Proteins c-met/genetics , RNA, Long Noncoding/genetics , Signal Transduction , Animals , Carcinoma, Hepatocellular/pathology , Caveolin 1/metabolism , Cell Adhesion/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , Neoplasm Invasiveness , Neoplasm Metastasis , Phenotype , Proto-Oncogene Proteins c-met/metabolism , RNA, Long Noncoding/metabolism , Tumor Stem Cell Assay , Zebrafish/embryology
6.
Nat Commun ; 11(1): 644, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005828

ABSTRACT

Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Glucose/metabolism , Liver/metabolism , MafG Transcription Factor/genetics , Obesity/genetics , RNA, Long Noncoding/genetics , Repressor Proteins/genetics , Aged , Animals , Diabetes Mellitus, Type 2/metabolism , Humans , MafG Transcription Factor/metabolism , Male , Mice , Middle Aged , Obesity/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
7.
Can J Gastroenterol Hepatol ; 2018: 7568742, 2018.
Article in English | MEDLINE | ID: mdl-30425976

ABSTRACT

Hepatocellular carcinoma (HCC) is a major health problem worldwide and most cases are incurable because of late presentation. It is the most common primary neoplasm of the liver and often arises in the context of a chronic liver disease that impairs coagulation. Portal vein thrombosis (PVT) is a common complication of HCC that is associated with a poor prognosis. Heparin derivatives are widely used in the management of venous thromboembolism (VTE). Among them low molecular weight heparin (LMWH) favorably influences the survival in patients with advanced cancer, including HCC. Due to their pleiotropic function, heparins affect tumorigenesis in many ways and may promote or hamper tumorigenic transformation depending on the cancer type and cancer stage along with their structural properties and concentration. Thus, their application as an antithrombotic along with the conventional therapy regime should be carefully planned to develop the best management strategies. In this review, we first will briefly review clinical applications of heparin derivatives in the management of cancer with a particular focus on HCC. We then summarize the state of knowledge whereby heparin can crosstalk with molecules playing a role in hepatocarcinogenesis. Lastly, we highlight new experimental and clinical research conducted with the aim of moving towards personalized therapy in cancer patients at risk of thromboembolism.


Subject(s)
Anticoagulants/pharmacology , Carcinoma, Hepatocellular/drug therapy , Genetic Pleiotropy/drug effects , Heparin/pharmacology , Liver Neoplasms/drug therapy , Carcinogenesis/drug effects , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/genetics , Humans , Liver Neoplasms/complications , Liver Neoplasms/genetics , Venous Thromboembolism/drug therapy , Venous Thromboembolism/etiology
9.
Int J Biochem Cell Biol ; 65: 169-81, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26037596

ABSTRACT

Heparins play an important role in cell growth, differentiation, migration and invasion. However, the molecular mechanisms of heparin mediated cellular behaviors are not well defined. To determine the effect of heparin on gene expression, we performed a cDNA microarray in a hepatocellular carcinoma cell line and found that heparin regulates transcription of genes involved in glucose metabolism. In this study, we showed a new role of heparin in the regulation of thioredoxin interacting protein, which is a major regulator of glucose metabolism, in hepatocellular carcinoma cell lines. We determined the importance of a unique carbohydrate response element located on its promoter for the heparin-induced activation of thioredoxin-interacting protein and the modulatory role of heparin on nuclear accumulation of carbohydrate response element associated proteins. We showed the importance of heparin mediated histone modifications and down-regulation of Enhancer of zeste 2 polycomb repressive complex 2 expression for heparin mediated overexpression of thioredoxin-interacting protein. When we tested biological significance of these data; we observed that cells overexpressing thioredoxin-interacting protein are less adhesive and proliferative, however they have a higher migration and invasion ability. Interestingly, heparin treatment increased thioredoxin-interacting protein expression in liver of diabetic rats. In conclusion, our results show that heparin activates thioredoxin-interacting protein expression in liver and hepatocellular carcinoma cells and provide the first evidences of regulatory roles of heparin on carbohydrate response element associated factors. This study will contribute future understanding of the effect of heparin on glucose metabolism and glucose independent overexpression of thioredoxin-interacting protein during hepatocarcinogenesis.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carrier Proteins/biosynthesis , Heparin/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Amino Acid Sequence , Animals , Carcinoma, Hepatocellular/pathology , Carrier Proteins/genetics , Cell Line, Tumor , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Disease Models, Animal , Humans , Liver Neoplasms/pathology , Male , Models, Molecular , Molecular Sequence Data , Promoter Regions, Genetic , Rats , Rats, Wistar , Transcriptional Activation/drug effects , Transfection
10.
N Biotechnol ; 30(4): 381-4, 2013 May 25.
Article in English | MEDLINE | ID: mdl-23392071

ABSTRACT

Hepatocellular carcinoma (HCC) represents a major form of primary liver cancer in adults. Chronic infections with hepatitis B (HBV) and C (HCV) viruses and alcohol abuse are the major factors leading to HCC. This deadly cancer affects more than 500,000 people worldwide and it is quite resistant to conventional chemo- and radiotherapy. Genetic and epigenetic studies on HCC may help to understand better its mechanisms and provide new tools for early diagnosis and therapy. Recent literature on whole genome analysis of HCC indicated a high number of mutated genes in addition to well-known genes such as TP53, CTNNB1, AXIN1 and CDKN2A, but their frequencies are much lower. Apart from CTNNB1 mutations, most of the other mutations appear to result in loss-of-function. Thus, HCC-associated mutations cannot be easily targeted for therapy. Epigenetic aberrations that appear to occur quite frequently may serve as new targets. Global DNA hypomethylation, promoter methylation, aberrant expression of non-coding RNAs and dysregulated expression of other epigenetic regulatory genes such as EZH2 are the best-known epigenetic abnormalities. Future research in this direction may help to identify novel biomarkers and therapeutic targets for HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Epigenesis, Genetic , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/therapy , Epigenomics , Humans , Liver Neoplasms/therapy
11.
J Matern Fetal Neonatal Med ; 26(11): 1143-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23356530

ABSTRACT

OBJECTIVE: Preeclampsia may result in uteroplacental insufficiency and chronic intrauterine fetal distress. The aim of this study is to address this issue investigating neuronal apoptosis in an experimental model of preeclampsia and to evaluate the neurological outcome of the perinatal asphyxia in the neonates born to preeclamptic mother. MATERIALS AND METHODS: Two out of four pregnant Sprague-Dawley rats (preeclamptic group) were given water containing 1.8% NaCl on gestation day 15 and 22 in order to establish the model of preeclampsia whereas other two (non-preeclamptic group) received normal diet. A model of perinatal asphyxia was established on the postnatal 7th day to one preeclamptic and one non-preeclamptic dam. Overall 23 pups born to overall four dams were decapitated to assess neuronal apoptosis by the TUNEL assay. RESULTS: The number of apoptotic neuronal cells was significantly higher in the preeclampsia groups in comparison with the control group (p = 0.006 and p = 0.006, respectively). It was also significantly higher in the asphyctic/non-preeclamptic group than the count in the control group (p = 0.01). There was also significant difference between both asphyctic groups (p = 0.003). CONCLUSION: We conclude that preeclampsia causes small babies for the gestational age and cerebral hypoplasia. Both preeclampsia and perinatal asphyxia can cause increased neuronal apoptosis in the neonatal brains. However, the prognosis for neurological outcome is much worse when the perinatal asphyxia occurs in newborns born to preeclamptic mothers.


Subject(s)
Apoptosis/physiology , Neurons/pathology , Neurons/physiology , Pre-Eclampsia/pathology , Pre-Eclampsia/physiopathology , Animals , Animals, Newborn , Asphyxia/pathology , Asphyxia/physiopathology , Brain/pathology , Brain/physiology , Female , Male , Mothers , Pregnancy , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...