Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Psychiatry ; 23(2): 271-281, 2018 02.
Article in English | MEDLINE | ID: mdl-27752082

ABSTRACT

The brain-specific tyrosine phosphatase, STEP (STriatal-Enriched protein tyrosine Phosphatase) is an important regulator of synaptic function. STEP normally opposes synaptic strengthening by increasing N-methyl D-aspartate glutamate receptor (NMDAR) internalization through dephosphorylation of GluN2B and inactivation of the kinases extracellular signal-regulated kinase 1/2 and Fyn. Here we show that STEP61 is elevated in the cortex in the Nrg1+/- knockout mouse model of schizophrenia (SZ). Genetic reduction or pharmacological inhibition of STEP prevents the loss of NMDARs from synaptic membranes and reverses behavioral deficits in Nrg1+/- mice. STEP61 protein is also increased in cortical lysates from the central nervous system-specific ErbB2/4 mouse model of SZ, as well as in human induced pluripotent stem cell (hiPSC)-derived forebrain neurons and Ngn2-induced excitatory neurons, from two independent SZ patient cohorts. In these selected SZ models, increased STEP61 protein levels likely reflect reduced ubiquitination and degradation. These convergent findings from mouse and hiPSC SZ models provide evidence for STEP61 dysfunction in SZ.


Subject(s)
Protein Tyrosine Phosphatases/physiology , Schizophrenia/metabolism , Animals , Disease Models, Animal , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuregulin-1/genetics , Neurons/metabolism , Phosphorylation , Protein Tyrosine Phosphatases/genetics , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/genetics , Ubiquitination
2.
Transl Psychiatry ; 5: e662, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26485546

ABSTRACT

The genetic and epigenetic factors contributing to risk for schizophrenia (SZ) remain unresolved. Here we demonstrate, for the first time, perturbed global protein translation in human-induced pluripotent stem cell (hiPSC)-derived forebrain neural progenitor cells (NPCs) from four SZ patients relative to six unaffected controls. We report increased total protein levels and protein synthesis, together with two independent sets of quantitative mass spectrometry evidence indicating markedly increased levels of ribosomal and translation initiation and elongation factor proteins, in SZ hiPSC NPCs. We posit that perturbed levels of global protein synthesis in SZ hiPSC NPCs represent a novel post-transcriptional mechanism that might contribute to disease progression.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/metabolism , Neurons/metabolism , Prosencephalon/metabolism , Schizophrenia/metabolism , Cell Differentiation , Cells, Cultured , Humans
3.
Mol Psychiatry ; 20(3): 361-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24686136

ABSTRACT

Consistent with recent reports indicating that neurons differentiated in vitro from human-induced pluripotent stem cells (hiPSCs) are immature relative to those in the human brain, gene expression comparisons of our hiPSC-derived neurons to the Allen BrainSpan Atlas indicate that they most resemble fetal brain tissue. This finding suggests that, rather than modeling the late features of schizophrenia (SZ), hiPSC-based models may be better suited for the study of disease predisposition. We now report that a significant fraction of the gene signature of SZ hiPSC-derived neurons is conserved in SZ hiPSC neural progenitor cells (NPCs). We used two independent discovery-based approaches-microarray gene expression and stable isotope labeling by amino acids in cell culture (SILAC) quantitative proteomic mass spectrometry analyses-to identify cellular phenotypes in SZ hiPSC NPCs from four SZ patients. From our findings that SZ hiPSC NPCs show abnormal gene expression and protein levels related to cytoskeletal remodeling and oxidative stress, we predicted, and subsequently observed, aberrant migration and increased oxidative stress in SZ hiPSC NPCs. These reproducible NPC phenotypes were identified through scalable assays that can be applied to expanded cohorts of SZ patients, making them a potentially valuable tool with which to study the developmental mechanisms contributing to SZ.


Subject(s)
Cell Differentiation/physiology , Neural Stem Cells/metabolism , Pluripotent Stem Cells/physiology , Prosencephalon/pathology , Schizophrenia/pathology , Adult , Animals , Antipsychotic Agents/pharmacology , Cell Differentiation/drug effects , Cell Movement , Cells, Cultured , Female , Gene Expression/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/drug effects , Mitochondria/pathology , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism , Neural Stem Cells/drug effects , Oxidative Stress/physiology , Phenotype , Pluripotent Stem Cells/drug effects , Proteomics , Reactive Oxygen Species/metabolism , Young Adult
4.
Ultramicroscopy ; 141: 1-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24681747

ABSTRACT

Multi-junction III-V solar cells are designed to have a much broader absorption of the solar spectrum than Si-based or single junctions, thus yield the highest conversion. The conversion efficiency can be further scaled with sun concentration. The ability of high conversion efficiencies makes multi-junction prime candidates for fine-tuning explorations aimed at getting closer to the theoretical efficiencies. In this paper, we report on electrostatic force microscopy (EFM) measurements of the built-in potential of multi-junction III-V semiconductor-based solar cells. Kelvin probe force microscopy (KPFM) was employed to qualitatively study the width and electrical properties of individual junctions, i.e., built-in potential, activity, and thickness of the p-n junctions. In addition, the voltage drops across individual solar cell p-n junctions were measured using Kelvin probe microscopy under various operation conditions: dark; illuminated; short-circuit; and biased. We present a method which enables the measurement of a working structure, while focusing on the electrical characteristics of an individual junction by virtue of selecting the spectral range of the illumination used. We show that these pragmatic studies can provide a feedback to improve photovoltaic device design, particularly of operation under a current mismatched situation. This new analysis technique offers additional insights into behavior of the multi-junction solar cell and shows promise for further progress in this field.

5.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(24): 2428-34, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19467934

ABSTRACT

The development of a capture step of a human recombinant F(ab')(2) produced and expressed in baculovirus-infected cells was investigated by screening three mixed-mode chromatography sorbents (HEA HyperCel, PPA HyperCel and MEP HyperCel) and two ion exchangers (Q Ceramic HyperD F, S Ceramic HyperD F) sorbents using a 96-well plate format and SELDI-MS. HEA HyperCel gave the best separation performance therefore the conditions tested in micro-plate were transferred to laboratory scale chromatographic experiments, confirming that the recombinant F(ab')(2) was effectively captured on the mixed-mode sorbent without any pre-treatment of the crude extract with a 82% recovery and a 39-fold purification.


Subject(s)
Baculoviridae/genetics , Chromatography, Liquid/methods , Immunoglobulin Fab Fragments/isolation & purification , Resins, Synthetic/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Baculoviridae/metabolism , Cell Line , Chromatography, Liquid/instrumentation , Gene Expression , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/metabolism , Protein Binding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL