Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Nano Mater ; 6(22): 20612-20622, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38037604

ABSTRACT

Group IVB metal nitrides have attracted great interest as alternative plasmonic materials. Among them, titanium nitride (TiN) stands out due to the ease of deposition and relative abundance of Ti compared to those of Zr and Hf metals. Even though they do not have Au or Ag-like plasmonic characteristics, they offer many advantages, from high mechanical stability to refractory behavior and complementary metal oxide semiconductor-compatible fabrication to tunable electrical/optical properties. In this study, we utilized reactive RF magnetron sputtering to deposit plasmonic TiN thin films. The flow rate and ratio of Ar/N2 and oxygen scavenging methods were optimized to improve the plasmonic performance of TiN thin films. The stoichiometry and structure of the TiN thin films were thoroughly investigated to assess the viability of the optimized operation procedures. To assess the plasmonic performance of TiN thin films, periodic nanohole arrays were perforated on TiN thin films by using electron beam lithography and reactive ion etching methods. The resulting TiN periodic nanohole array with varying periods was investigated by using a custom microspectroscopy setup for both reflection and transmission characteristics in various media to underline the efficacy of TiN for refractometric sensing.

2.
Anal Chim Acta ; 1152: 238189, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33648647

ABSTRACT

The similarity between originator and biosimilar monoclonal antibody candidates are rigorously assessed based on primary, secondary, tertiary, quaternary structures, and biological functions. Minor differences in such parameters may alter target-binding, potency, efficacy, or half-life of the molecule. The charge heterogeneity analysis is a prerequisite for all biotherapeutics. Monoclonal antibodies are prone to enzymatic or non-enzymatic structural modifications during or after the production processes, leading to the formation of fragments or aggregates, various glycoforms, oxidized, deamidated, and other degraded residues, reduced Fab region binding activity or altered FcR binding activity. Therefore, the charge variant profiles of the monoclonal antibodies must be regularly and thoroughly evaluated. Comparative structural and functional analysis of physically separated or fractioned charged variants of monoclonal antibodies has gained significant attention in the last few years. The fraction-based charge variant analysis has proved very useful for the biosimilar candidates comprising of unexpected charge isoforms. In this report, the key methods for the physical separation of monoclonal antibody charge variants, structural and functional analyses by liquid chromatography-mass spectrometry, and surface plasmon resonance techniques were reviewed.


Subject(s)
Biosimilar Pharmaceuticals , Antibodies, Monoclonal , Chromatography, Liquid , Mass Spectrometry , Surface Plasmon Resonance
3.
Mikrochim Acta ; 186(8): 563, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31338623

ABSTRACT

Fluorescence resonance energy transfer, one of the most powerful phenomena for elucidating molecular interactions, has been extensively utilized as a biosensing tool to provide accurate information at the nanoscale. Numerous aptamer- and nanomaterial-based FRET bioassays has been developed for detection of a large variety of molecules. Affinity probes are widely used in biosensors, in which aptamers have emerged as advantageous biorecognition elements, due to their chemical and structural stability. Similarly, optically active nanomaterials offer significant advantages over conventional organic dyes, such as superior photophysical properties, large surface-to-volume ratios, photostability, and longer shelf life. In this report (with 175 references), the use of aptamer-modified nanomaterials as FRET couples is reviewed: quantum dots, upconverting nanoparticles, graphene, reduced graphene oxide, gold nanoparticles, molybdenum disulfide, graphene quantum dots, carbon dots, and metal-organic frameworks. Tabulated summaries provide the reader with useful information on the current state of research in the field. Graphical abstract Schematic representation of a fluorescence resonance energy transfer-based aptamer nanoprobe in the absence and presence of a given target molecule (analyte). Structures are not drawn to their original scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...