Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 23095, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34887437

ABSTRACT

Theropod behaviour and biodynamics are intriguing questions that paleontology has been trying to resolve for a long time. The lack of extant groups with similar bipedalism has made it hard to answer some of the questions on the matter, yet theoretical biomechanical models have shed some light on the question of how fast theropods could run and what kind of movement they showed. The study of dinosaur tracks can help answer some of these questions due to the very nature of tracks as a product of the interaction of these animals with the environment. Two trackways belonging to fast-running theropods from the Lower Cretaceous Enciso Group of Igea (La Rioja) are presented here and compared with other fast-running theropod trackways published to date. The Lower Cretaceous Iberian fossil record and some features present in these footprints and trackways suggest a basal tetanuran, probably a carcharodontosaurid or spinosaurid, as a plausible trackmaker. Speed analysis shows that these trackways, with speed ranges of 6.5-10.3 and 8.8-12.4 ms-1, testify to some of the top speeds ever calculated for theropod tracks, shedding light on the question of dinosaur biodynamics and how these animals moved.

2.
Curr Biol ; 28(9): 1467-1474.e2, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29706515

ABSTRACT

The teeth of putatively carnivorous dinosaurs are often blade-shaped with well-defined serrated cutting edges (Figure 1). These ziphodont teeth are often easily differentiated based on the morphology and density of the denticles [1, 2]. A tearing function has been proposed for theropod denticles in general [3], but the functional significance of denticle phenotypic variation has received less attention. In particular, the unusual hooked denticles found in troodontids suggest a different feeding strategy or diet compared to other small theropods. We used a two-pronged approach to investigate the function of denticle shape variation across theropods with both congruent body shapes and sizes (e.g., dromaeosaurids versus troodontids) and highly disparate body shapes and sizes (e.g., troodontids versus tyrannosaurids), using microwear and finite element analyses (Figure 1). We found that many toothed coelurosaurian theropods employed a puncture-and-pull feeding movement, in which parallel scratches form while biting down into prey and oblique scratches form as the head is pulled backward with the jaws closed. In finite element simulations, theropod teeth had the lowest stresses when bite forces were aligned with the oblique family of microwear scratches. Different denticle morphologies performed differently under a variety of simulated biting angles: Dromaeosaurus and Saurornitholestes were well-adapted for handling struggling prey, whereas troodontid teeth were more likely to fail at non-optimal bite angles. Troodontids may have favored softer, smaller, or immobile prey.


Subject(s)
Dinosaurs/anatomy & histology , Feeding Behavior/physiology , Tooth/anatomy & histology , Animals , Biomechanical Phenomena/physiology , Biophysics , Bite Force , Carnivory , Dinosaurs/physiology , Fossils , Jaw/anatomy & histology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...