Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
J Biol Chem ; 300(4): 107173, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499149

ABSTRACT

Sunlight exposure results in an inflammatory reaction of the skin commonly known as sunburn, which increases skin cancer risk. In particular, the ultraviolet B (UVB) component of sunlight induces inflammasome activation in keratinocytes to instigate the cutaneous inflammatory responses. Here, we explore the intracellular machinery that maintains skin homeostasis by suppressing UVB-induced inflammasome activation in human keratinocytes. We found that pharmacological inhibition of autophagy promoted UVB-induced NLRP3 inflammasome activation. Unexpectedly, however, gene silencing of Atg5 or Atg7, which are critical for conventional autophagy, had no effect, whereas gene silencing of Beclin1, which is essential not only for conventional autophagy but also for Atg5/Atg7-independent alternative autophagy, promoted UVB-induced inflammasome activation, indicating an involvement of alternative autophagy. We found that damaged mitochondria were highly accumulated in UVB-irradiated keratinocytes when alternative autophagy was inhibited, and they appear to be recognized by NLRP3. Overall, our findings indicate that alternative autophagy, rather than conventional autophagy, suppresses UVB-induced NLRP3 inflammasome activation through the clearance of damaged mitochondria in human keratinocytes and illustrate a previously unknown involvement of alternative autophagy in inflammation. Alternative autophagy may be a new therapeutic target for sunburn and associated cutaneous disorders.


Subject(s)
Autophagy , Inflammasomes , Keratinocytes , Mitochondria , NLR Family, Pyrin Domain-Containing 3 Protein , Ultraviolet Rays , Humans , Autophagy/radiation effects , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Beclin-1/metabolism , Beclin-1/genetics , Inflammasomes/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology , Keratinocytes/radiation effects , Mitochondria/metabolism , Mitochondria/radiation effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Ultraviolet Rays/adverse effects , Cells, Cultured
2.
Cells ; 12(24)2023 12 11.
Article in English | MEDLINE | ID: mdl-38132137

ABSTRACT

Autophagy is a cellular mechanism that utilizes lysosomes to degrade its own components and is performed using Atg5 and other molecules originating from the endoplasmic reticulum membrane. On the other hand, we identified an alternative type of autophagy, namely, Golgi membrane-associated degradation (GOMED), which also utilizes lysosomes to degrade its own components, but does not use Atg5 originating from the Golgi membranes. The GOMED pathway involves Ulk1, Wipi3, Rab9, and other molecules, and plays crucial roles in a wide range of biological phenomena, such as the regulation of insulin secretion and neuronal maintenance. We here describe the overview of GOMED, methods to detect autophagy and GOMED, and to distinguish GOMED from autophagy.


Subject(s)
Autophagy , Golgi Apparatus , Golgi Apparatus/metabolism , Autophagy/physiology , Lysosomes/metabolism , Endoplasmic Reticulum
3.
EMBO Mol Med ; 15(9): e17451, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37578019

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder that results from the loss of dopaminergic neurons. Mutations in coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) gene cause a familial form of PD with α-Synuclein aggregation, and we here identified the pathogenesis of the T61I mutation, the most common disease-causing mutation of CHCHD2. In Neuro2a cells, CHCHD2 is in mitochondria, whereas the T61I mutant (CHCHD2T61I ) is mislocalized in the cytosol. CHCHD2T61l then recruits casein kinase 1 epsilon/delta (Csnk1e/d), which phosphorylates neurofilament and α-Synuclein, forming cytosolic aggresomes. In vivo, both Chchd2T61I knock-in and transgenic mice display neurodegenerative phenotypes and aggresomes containing Chchd2T61I , Csnk1e/d, phospho-α-Synuclein, and phospho-neurofilament in their dopaminergic neurons. Similar aggresomes were observed in a postmortem PD patient brain and dopaminergic neurons generated from patient-derived iPS cells. Importantly, a Csnk1e/d inhibitor substantially suppressed the phosphorylation of neurofilament and α-Synuclein. The Csnk1e/d inhibitor also suppressed the cellular damage in CHCHD2T61I -expressing Neuro2a cells and dopaminergic neurons generated from patient-derived iPS cells and improved the neurodegenerative phenotypes of Chchd2T61I mutant mice. These results indicate that Csnk1e/d is involved in the pathogenesis of PD caused by the CHCHD2T61I mutation.


Subject(s)
Casein Kinase 1 epsilon , Parkinson Disease , Mice , Animals , Transcription Factors/genetics , DNA-Binding Proteins/genetics , alpha-Synuclein/genetics , Parkinson Disease/genetics , Casein Kinase 1 epsilon/genetics , Mutation
4.
Genes Cells ; 28(1): 5-14, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36318474

ABSTRACT

AMP-activated protein kinase (AMPK) inactivation in chronic kidney disease (CKD) leads to energy status deterioration in the kidney, constituting the vicious cycle of CKD exacerbation. Unc-51-like kinase 1 (ULK1) is considered a downstream molecule of AMPK; however, it was recently reported that the activity of AMPK could be regulated by ULK1 conversely. We demonstrated that AMPK and ULK1 activities were decreased in the kidneys of CKD mice. However, whether and how ULK1 is involved in the underlying mechanism of CKD exacerbation remains unknown. In this study, we investigated the ULK1 involvement in CKD, using ULK1 knockout mice. The CKD model of Ulk1-/- mice exhibited significantly exacerbated renal function and worsening renal fibrosis. In the kidneys of the CKD model of Ulk1-/- mice, reduced AMPK and its downstream ß-oxidation could be observed, leading to an energy deficit of increased AMP/ATP ratio. In addition, AMPK signaling in the kidney was reduced in control Ulk1-/- mice with normal renal function compared to control wild-type mice, suggesting that ULK1 deficiency suppressed AMPK activity in the kidney. This study is the first to present ULK1 as a novel therapeutic target for CKD treatment, which regulates AMPK activity in the kidney.


Subject(s)
AMP-Activated Protein Kinases , Renal Insufficiency, Chronic , Mice , Animals , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Kidney/metabolism , Renal Insufficiency, Chronic/metabolism , Phosphorylation , Autophagy
5.
Cells ; 13(1)2023 12 28.
Article in English | MEDLINE | ID: mdl-38201273

ABSTRACT

Recent advancements in genome analysis technology have revealed the presence of read-through transcripts in which transcription continues by skipping the polyA signal. We here identified and characterized a new read-through transcript, TOMM40-APOE. With cDNA amplification from THP-1 cells, the TOMM40-APOE3 product was successfully generated. We also generated TOMM40-APOE4, another isoform, by introducing point mutations. Notably, while APOE3 and APOE4 exhibited extracellular secretion, both TOMM40-APOE3 and TOMM40-APOE4 were localized exclusively to the mitochondria. But functionally, they did not affect mitochondrial membrane potential. Cell death induction studies illustrated increased cell death with TOMM40-APOE3 and TOMM40-APOE4, and we did not find any difference in cellular function between the two isoforms. These findings indicated that the new mitochondrial protein TOMM40-APOE has cell toxic ability.


Subject(s)
Apolipoprotein E4 , Apolipoproteins E , Apolipoprotein E3 , Cell Death , DNA, Complementary
6.
Cell Death Discov ; 7(1): 300, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34675183

ABSTRACT

Inhibitory PAS domain protein (IPAS) is a bifunctional protein that acts as a transcriptional repressor in hypoxia and as a pro-apoptotic protein involved in neuronal cell death. Npas4 (NXF or LE-PAS) is a transcriptional factor that protects nerve cells from endogenous and foreign neurotoxins. Here we show that IPAS and Npas4 antagonize each other through their direct interaction. Coimmunoprecipitation experiments revealed that multiple binding sites on each protein were involved in the interaction. CoCl2 treatment of PC12 cells that induces IPAS repressed the transactivation activity of Npas4, and IPAS siRNA treatment reduced the CoCl2-induced repression. CoCl2-induced apoptosis was suppressed by the addition of KCl that induces Npas4. The protective effect of KCl was attenuated by siRNA-mediated gene silencing of Npas4. Npas4 and IPAS proteins were induced and localized in the cytoplasm of the dopaminergic neurons in the substantia nigra pars compacta after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Npas4-/- mice exhibited greater sensitivity to MPTP in nigral dopaminergic neurons. Together, these results strongly suggest that neuroprotective activity of Npas4 was, at least partly, exerted by inhibiting the pro-apoptotic activity of IPAS through direct interaction.

7.
Hum Mol Genet ; 30(6): 443-453, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33631794

ABSTRACT

Inactivation of constitutive autophagy results in the formation of cytoplasmic inclusions in neurones, but the relationship between impaired autophagy and Lewy bodies (LBs) remains unknown. α-Synuclein and p62, components of LBs, are the defining characteristic of Parkinson's disease (PD). Until now, we have analyzed mice models and demonstrated p62 aggregates derived from an autophagic defect might serve as 'seeds' and can potentially be a cause of LB formation. P62 may be the key molecule for aggregate formation. To understand the mechanisms of LBs, we analyzed p62 homeostasis and inclusion formation using PD model mice. In PARK22-linked PD, intrinsically disordered mutant CHCHD2 initiates Lewy pathology. To determine the function of CHCHD2 for inclusions formation, we generated Chchd2-knockout (KO) mice and characterized the age-related pathological and motor phenotypes. Chchd2 KO mice exhibited p62 inclusion formation and dopaminergic neuronal loss in an age-dependent manner. These changes were associated with a reduction in mitochondria complex activity and abrogation of inner mitochondria structure. In particular, the OPA1 proteins, which regulate fusion of mitochondrial inner membranes, were immature in the mitochondria of CHCHD2-deficient mice. CHCHD2 regulates mitochondrial morphology and p62 homeostasis by controlling the level of OPA1. Our findings highlight the unexpected role of the homeostatic level of p62, which is regulated by a non-autophagic system, in controlling intracellular inclusion body formation, and indicate that the pathologic processes associated with the mitochondrial proteolytic system are crucial for loss of DA neurones.


Subject(s)
DNA-Binding Proteins/physiology , Homeostasis , Inclusion Bodies/pathology , Lewy Bodies/pathology , Mitochondria/pathology , Parkinson Disease/pathology , Sequestosome-1 Protein/metabolism , Transcription Factors/physiology , Animals , Autophagy , Disease Models, Animal , Inclusion Bodies/metabolism , Lewy Bodies/genetics , Lewy Bodies/metabolism , Mice , Mice, Knockout , Mitochondria/metabolism , Neurons/metabolism , Neurons/pathology , Parkinson Disease/genetics , Parkinson Disease/metabolism , Sequestosome-1 Protein/genetics
8.
Nat Commun ; 11(1): 5311, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33082312

ABSTRACT

Alternative autophagy is an Atg5/Atg7-independent type of autophagy that contributes to various physiological events. We here identify Wipi3 as a molecule essential for alternative autophagy, but which plays minor roles in canonical autophagy. Wipi3 binds to Golgi membranes and is required for the generation of isolation membranes. We establish neuron-specific Wipi3-deficient mice, which show behavioral defects, mainly as a result of cerebellar neuronal loss. The accumulation of iron and ceruloplasmin is also found in the neuronal cells. These abnormalities are suppressed by the expression of Dram1, which is another crucial molecule for alternative autophagy. Although Atg7-deficient mice show similar phenotypes to Wipi3-deficient mice, electron microscopic analysis shows that they have completely different subcellular morphologies, including the morphology of organelles. Furthermore, most Atg7/Wipi3 double-deficient mice are embryonic lethal, indicating that Wipi3 functions to maintain neuronal cells via mechanisms different from those of canonical autophagy.


Subject(s)
Autophagy , Neurodegenerative Diseases/metabolism , Animals , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Female , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/physiopathology
9.
Cancer Sci ; 111(11): 3993-3999, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32897597

ABSTRACT

Various clinical and experimental findings have revealed the causal relationship between autophagy failure and oncogenesis, and several mechanisms have been suggested to explain this relationship. We recently proposed two additional mechanisms: centrosome number dysregulation and the failure of autophagic cell death. Here, we detail the mechanical relationship between autophagy failure and oncogenesis.


Subject(s)
Autophagy , Cell Transformation, Neoplastic , Neoplasms/etiology , Neoplasms/metabolism , Animals , Biomarkers , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Centrosome/metabolism , Disease Progression , Disease Susceptibility , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/pathology , Signal Transduction
10.
Autophagy ; 16(8): 1532-1533, 2020 08.
Article in English | MEDLINE | ID: mdl-32543339

ABSTRACT

Alternative autophagy is an ATG5 (autophagy related 5)-independent, Golgi membrane-derived form of macroautophagy. ULK1 (unc-51 like kinase 1) is an essential initiator not only for canonical autophagy but also for alternative autophagy. However, the mechanism as to how ULK1 differentially regulates both types of autophagy has remained unclear. Recently, we identified a novel phosphorylation site of ULK1 at Ser746, which is required for alternative autophagy, but not canonical autophagy. We also identify RIPK3 (receptor-interacting serine-threonine kinase 3) as the kinase responsible for genotoxic stress-induced ULK1 S746 phosphorylation. These findings indicate that RIPK3-dependent ULK1 S746 phosphorylation plays a pivotal role in genotoxic stress-induced alternative autophagy.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Autophagy , Animals , Humans , Models, Biological , Phosphorylation
11.
Nat Commun ; 11(1): 1754, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32273498

ABSTRACT

Alternative autophagy is an autophagy-related protein 5 (Atg5)-independent type of macroautophagy. Unc51-like kinase 1 (Ulk1) is an essential initiator not only for Atg5-dependent canonical autophagy but also for alternative autophagy. However, the mechanism as to how Ulk1 differentially regulates both types of autophagy has remained unclear. In this study, we identify a phosphorylation site of Ulk1 at Ser746, which is phosphorylated during genotoxic stress-induced alternative autophagy. Phospho-Ulk1746 localizes exclusively on the Golgi and is required for alternative autophagy, but not canonical autophagy. We also identify receptor-interacting protein kinase 3 (RIPK3) as the kinase responsible for genotoxic stress-induced Ulk1746 phosphorylation, because RIPK3 interacts with and phosphorylates Ulk1 at Ser746, and loss of RIPK3 abolishes Ulk1746 phosphorylation. These findings indicate that RIPK3-dependent Ulk1746 phosphorylation on the Golgi plays a pivotal role in genotoxic stress-induced alternative autophagy.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Autophagy/physiology , DNA Damage , Golgi Apparatus/metabolism , Serine/metabolism , Amino Acid Sequence , Animals , Autophagy/genetics , Autophagy-Related Protein-1 Homolog/genetics , Binding Sites/genetics , Cells, Cultured , Embryo, Mammalian/cytology , Etoposide/pharmacology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice, Knockout , Microscopy, Confocal , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Sequence Homology, Amino Acid , Serine/genetics
12.
Life Sci Alliance ; 3(3)2020 03.
Article in English | MEDLINE | ID: mdl-32029570

ABSTRACT

Mitochondria play a central role in the function of brown adipocytes (BAs). Although mitochondrial biogenesis, which is indispensable for thermogenesis, is regulated by coordination between nuclear DNA transcription and mitochondrial DNA transcription, the molecular mechanisms of mitochondrial development during BA differentiation are largely unknown. Here, we show the importance of the ER-resident sensor PKR-like ER kinase (PERK) in the mitochondrial thermogenesis of brown adipose tissue. During BA differentiation, PERK is physiologically phosphorylated independently of the ER stress. This PERK phosphorylation induces transcriptional activation by GA-binding protein transcription factor α subunit (GABPα), which is required for mitochondrial inner membrane protein biogenesis, and this novel role of PERK is involved in maintaining the body temperatures of mice during cold exposure. Our findings demonstrate that mitochondrial development regulated by the PERK-GABPα axis is indispensable for thermogenesis in brown adipose tissue.


Subject(s)
Adipose Tissue, Brown/metabolism , Endoplasmic Reticulum/metabolism , eIF-2 Kinase/metabolism , Adipocytes, Brown/metabolism , Animals , Cell Differentiation/genetics , DNA, Mitochondrial/metabolism , Female , Male , Mice , Mice, Inbred ICR , Mitochondria/metabolism , Organelle Biogenesis , Phosphorylation , Signal Transduction/genetics , Thermogenesis/physiology , Transcription, Genetic/genetics
13.
Int J Mol Sci ; 21(4)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32054064

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder. Recent identification of genes linked to familial forms of PD has revealed that post-translational modifications, such as phosphorylation and ubiquitination of proteins, are key factors in disease pathogenesis. In PD, E3 ubiquitin ligase Parkin and the serine/threonine-protein kinase PTEN-induced kinase 1 (PINK1) mediate the mitophagy pathway for mitochondrial quality control via phosphorylation and ubiquitination of their substrates. In this review, we first focus on well-characterized PINK1 phosphorylation motifs. Second, we describe our findings concerning relationships between Parkin and HtrA2/Omi, a protein involved in familial PD. Third, we describe our findings regarding inhibitory PAS (Per/Arnt/Sim) domain protein (IPAS), a member of PINK1 and Parkin substrates, involved in neurodegeneration during PD. IPAS is a dual-function protein involved in transcriptional repression of hypoxic responses and the pro-apoptotic activities.


Subject(s)
Mitochondria/metabolism , Parkinson Disease/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Disease Models, Animal , Humans , Mice , Mitochondria/pathology , Mitophagy , Parkinson Disease/pathology , Phosphorylation , Protein Kinases/metabolism , Ubiquitination
14.
FEBS Lett ; 594(10): 1586-1595, 2020 05.
Article in English | MEDLINE | ID: mdl-31997355

ABSTRACT

Autophagy is an intracellular process that regulates the degradation of cytosolic proteins and organelles. Dying cells often accumulate autophagosomes. However, the mechanisms by which necroptotic stimulation induces autophagosomes are not defined. Here, we demonstrate that the activation of necroptosis with TNF-α plus the cell-permeable pan-caspase inhibitor Z-VAD induces LC3-II and LC3 puncta, markers of autophagosomes, via the receptor-interacting protein kinase 3 (RIPK3) in intestinal epithelial cells. Surprisingly, necroptotic stimulation reduces autophagic activity, as evidenced by enlarged puncta of the autophagic substrate SQSTM1/p62 and its increased colocalization with LC3. However, necroptotic stimulation does not induce the lysosomal-associated membrane protein 1 (LAMP1) nor syntaxin 17, which mediates autophagosome-lysosome fusion, to colocalize with LC3. These data indicate that necroptosis attenuates autophagic flux before the lysosome fusion step. Our findings may provide insights into human diseases involving necroptosis.


Subject(s)
Autophagy , Epithelial Cells/cytology , Epithelial Cells/enzymology , Intestines/cytology , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Cell Line, Tumor , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Microtubule-Associated Proteins/metabolism , Necroptosis/drug effects , Oligopeptides/pharmacology , Sequestosome-1 Protein/metabolism , Tumor Necrosis Factor-alpha/pharmacology
15.
J Mol Biol ; 432(8): 2622-2632, 2020 04 03.
Article in English | MEDLINE | ID: mdl-31978398

ABSTRACT

Autophagy is a cellular process that degrades intracellular components, including misfolded proteins and damaged organelles. Many neurodegenerative diseases are considered to progress via the accumulation of misfolded proteins and damaged organelles; therefore, autophagy functions in regulating disease severity. There are at least two types of autophagy (canonical autophagy and alternative autophagy), and canonical autophagy has been applied to therapeutic strategies against various types of neurodegenerative diseases. In contrast, the role of alternative autophagy has not yet been clarified, but it is speculated to be involved in the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease.


Subject(s)
Autophagy-Related Protein 5/metabolism , Autophagy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Animals , Humans
16.
Nat Commun ; 10(1): 674, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30787297

ABSTRACT

Direct cardiac reprogramming from fibroblasts can be a promising approach for disease modeling, drug screening, and cardiac regeneration in pediatric and adult patients. However, postnatal and adult fibroblasts are less efficient for reprogramming compared with embryonic fibroblasts, and barriers to cardiac reprogramming associated with aging remain undetermined. In this study, we screened 8400 chemical compounds and found that diclofenac sodium (diclofenac), a non-steroidal anti-inflammatory drug, greatly enhanced cardiac reprogramming in combination with Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2. Intriguingly, diclofenac promoted cardiac reprogramming in mouse postnatal and adult tail-tip fibroblasts (TTFs), but not in mouse embryonic fibroblasts (MEFs). Mechanistically, diclofenac enhanced cardiac reprogramming by inhibiting cyclooxygenase-2, prostaglandin E2/prostaglandin E receptor 4, cyclic AMP/protein kinase A, and interleukin 1ß signaling and by silencing inflammatory and fibroblast programs, which were activated in postnatal and adult TTFs. Thus, anti-inflammation represents a new target for cardiac reprogramming associated with aging.


Subject(s)
Cellular Reprogramming/drug effects , Cyclooxygenase 2/pharmacology , Myocytes, Cardiac/drug effects , Receptors, Prostaglandin E, EP4 Subtype/drug effects , Signal Transduction/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/drug effects , Cyclic AMP , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclooxygenase 2/drug effects , Diclofenac/pharmacology , Dinoprostone , Fibroblasts , GATA4 Transcription Factor/metabolism , Humans , Inflammation , Interleukin-1beta , MEF2 Transcription Factors/metabolism , Mice , Mice, Transgenic , T-Box Domain Proteins/metabolism
17.
Methods Mol Biol ; 1759: 125-132, 2018.
Article in English | MEDLINE | ID: mdl-28456949

ABSTRACT

Mitophagy is a mitochondrial quality control mechanism where damaged and surplus mitochondria are removed by autophagy. There are at least two different mammalian autophagy pathways: the Atg5-dependent conventional pathway and an Atg5-independent alternative pathway; the latter is involved in the erythrocyte mitophagy. In this chapter we describe the various experimental approaches to assess Atg5-indepedndent mitophagy in mammalian cells.


Subject(s)
Autophagy-Related Protein 5/metabolism , Mitochondria/metabolism , Mitophagy , Signal Transduction , Animals , Autophagy-Related Protein 5/genetics , Biological Assay , Cell Line , Erythrocytes/metabolism , Flow Cytometry , Gene Knockout Techniques , Genes, Reporter , Humans , Mice , Mitochondria/genetics , Mitochondria/ultrastructure , Sequence Deletion
18.
Cell Stress ; 2(3): 55-65, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-31225467

ABSTRACT

Autophagy is an evolutionarily conserved process that degrades subcellular constituents. Mammalian cells undergo two types of autophagy; Atg5-dependent conventional autophagy and Atg5-independent alternative autophagy, and the molecules required for the latter type of autophagy are largely unknown. In this study, we analyzed the molecular mechanisms of genotoxic stress-induced alternative autophagy, and identified the essential role of p53 and damage-regulated autophagy modulator (Dram1). Dram1 was sufficient to induce alternative autophagy. In the mechanism of alternative autophagy, Dram1 functions in the closure of isolation membranes downstream of p53. These findings indicate that Dram1 plays a pivotal role in genotoxic stress-induced alternative autophagy.

19.
FEBS J ; 284(23): 4115-4127, 2017 12.
Article in English | MEDLINE | ID: mdl-29054108

ABSTRACT

Inhibitory PAS domain protein (IPAS) is a bifunctional protein that downregulates hypoxic gene expression and exerts proapoptotic activity by preventing prosurvival activity of Bcl-xL and its related factors. Proapoptotic activity of IPAS is attenuated by the activation of the PINK1-Parkin pathway, and involved in neuronal degeneration in an experimental mouse model of Parkinson's disease. The current study shows that phosphorylation of IPAS at Ser184 by MAPK-activated protein kinase 2 (MK2 or MAPKAPK2) enhances the proapoptotic function of IPAS. Perinuclear clustering of mitochondria and activation of caspase-3 caused by the transient expression of EGFP-IPAS were increased by UVB irradiation. The C-terminal region of IPAS mediated the UVB susceptibility of IPAS. Increase in IPAS-induced mitochondrial clustering by UVB was completly inhibited by the p38 MAPK inhibitor SB203580. Mass spectrometry analysis of UVB-activated IPAS identified several phosphorylation sites in the C-terminal region containing p38 MAPK consensus phosphorylation sites at Ser219 and Ser223, and an MK2 consensus site at Ser184. Although mutations of Ser219 and Ser223 to Ala did not suppress the UVB-induced mitochondrial clustering, replacement of Ser184 with Ala blocked it. A phosphomimetic substitution at Ser184 enhanced mitochondrial clustering and activation of caspase-3 without UVB exposure. Furthermore, binding affinity to Bcl-xL was increased by the mutation. Treatment of PC12 cells with CoCl2 caused activation of MK2 and mitochondrial clustering. IPAS-dependent cell death induced by CoCl2 in PC12 cells was decreased by the treatment with the MK2 inhibitor MK2 inhibitor III and by siRNA-directed silencing of MK2.


Subject(s)
Apoptosis , Mitogen-Activated Protein Kinase 1/metabolism , Serine/metabolism , Transcription Factors/metabolism , Animals , Apoptosis Regulatory Proteins , Caspase 3/metabolism , Enzyme Activation/drug effects , Enzyme Activation/radiation effects , HEK293 Cells , Humans , Imidazoles/pharmacology , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/radiation effects , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/genetics , PC12 Cells , Phosphorylation , Pyridines/pharmacology , RNA Interference , Rats , Repressor Proteins , Serine/genetics , Transcription Factors/genetics , Ultraviolet Rays , p38 Mitogen-Activated Protein Kinases/metabolism
20.
ACS Chem Biol ; 12(10): 2546-2551, 2017 10 20.
Article in English | MEDLINE | ID: mdl-28925688

ABSTRACT

There has been a growing interest in mitophagy, mitochondria-selective autophagy, which plays an essential role in maintaining intracellular homeostasis. We have developed a small-molecule fluorescent probe, Mtphagy Dye, for visualizing mitophagy, which was readily synthesized from a known perylene derivative, perylene-3,4-dicarboxylic anhydride. Mtphagy Dye has suitable fluorescent properties for detecting mitochondrial acidification during mitophagy in the long-wavelength region that does not damage mitochondria. Using Mtphagy Dye, we were able to visualize mitophagy with both cases of Parkin-dependent and -independent HeLa cells.


Subject(s)
Autophagy/physiology , Fluorescent Dyes/chemistry , Mitochondria/physiology , Mitophagy/physiology , Optical Imaging/methods , Perylene/analogs & derivatives , HeLa Cells , Humans , Hydrogen-Ion Concentration , Kinetics , Molecular Structure , Perylene/chemistry , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL