Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 50(4): e23, 2022 02 28.
Article in English | MEDLINE | ID: mdl-34850942

ABSTRACT

Most RNA footprinting approaches that require ribonuclease cleavage generate RNA fragments bearing a phosphate or cyclic phosphate group at their 3' end. Unfortunately, current library preparation protocols rely only on a 3' hydroxyl group for adaptor ligation or poly-A tailing. Here, we developed circAID-p-seq, a PCR-free library preparation for selective 3' phospho-RNA sequencing. As a proof of concept, we applied circAID-p-seq to ribosome profiling, which is based on sequencing of RNA fragments protected by ribosomes after endonuclease digestion. CircAID-p-seq, combined with the dedicated computational pipeline circAidMe, facilitates accurate, fast and highly efficient sequencing of phospho-RNA fragments from eukaryotic cells and tissues. We used circAID-p-seq to portray ribosome occupancy in transcripts, providing a versatile and PCR-free strategy to possibly unravel any endogenous 3'-phospho RNA molecules.


Subject(s)
RNA , Ribosomes , Gene Library , High-Throughput Nucleotide Sequencing/methods , Phosphates , RNA/genetics , Ribosomes/genetics , Sequence Analysis, RNA/methods
2.
DNA Repair (Amst) ; 71: 69-81, 2018 11.
Article in English | MEDLINE | ID: mdl-30190235

ABSTRACT

R-loops are structures consisting of an RNA-DNA duplex and an unpaired DNA strand. They can form during transcription upon nascent RNA "threadback" invasion into the DNA duplex to displace the non-template strand. Although R-loops occur naturally in all kingdoms of life and serve regulatory roles, they are often deleterious and can cause genomic instability. Of particular importance are the disastrous consequences when replication forks or transcription complexes collide with R-loops. The appropriate processing of R-loops is essential to avoid a number of human neurodegenerative and other clinical disorders. We provide a perspective on mechanistic aspects of R-loop formation and their resolution learned from studies in model systems. This should contribute to improved understanding of R-loop biological functions and enable their practical applications. We propose the novel employment of artificially-generated stable R-loops to selectively inactivate tumor cells.


Subject(s)
DNA Damage , DNA Repair , DNA/metabolism , Nucleic Acid Conformation , RNA/metabolism , Transcription, Genetic , DNA/chemistry , Eukaryota/genetics , Eukaryota/metabolism , Genomic Instability , Humans , RNA/chemistry
3.
Nucleic Acids Res ; 42(12): 7708-19, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24848015

ABSTRACT

Excision repair processes are essential to maintain genome stability. A decrease in efficiency and fidelity of these pathways at regions of the genome that can assume non-canonical DNA structures has been proposed as a possible mechanism to explain the increased mutagenesis and consequent diseased state frequently associated with these sites. Here we describe the development of a FRET-based approach to monitor the presence of G quadruplex (G4) DNA, a non-canonical DNA structure formed in runs of guanines, in damage-containing single-stranded and double-stranded DNA. Using this approach, we directly show for the first time that the presence within the G4 structure of an abasic site, the most common lesion spontaneously generated during cellular metabolism, decreases the efficiency of human AP endonuclease activity and that this effect is mostly the result of a decreased enzymatic activity and not of decreased binding of the enzyme to the damaged site. This approach can be generally applied to dissecting the biochemistry of DNA repair at non-canonical DNA structures.


Subject(s)
DNA Damage , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , G-Quadruplexes , DNA/chemistry , DNA/metabolism , Fluorescence Resonance Energy Transfer/methods , Genes, myc , Polyethylene Glycols/chemistry
4.
Biochemistry ; 51(26): 5257-68, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22667821

ABSTRACT

G quadruplex (G4) DNA is a noncanonical four-stranded DNA structure that can form in G repeats by stacking of planar arrays of four hydrogen-bonded guanines called G quartets, in the presence of potassium ions. In addition to a presumed function in the regulation of gene expression, G4 DNA also localizes to regions often characterized by genomic instability. This suggests that formation of this structure may interfere with DNA transactions, including processing of DNA damage at these sites. Here we have studied the effect of two spontaneous DNA lesions, the abasic site and 8-oxoguanine, on the transition from duplex to quadruplex DNA structure occurring at nuclease hypersensitive element III(1) (NHEIII(1)) of the human c-myc promoter. We show by dimethyl sulfate footprinting and RNA polymerase arrest assays that at physiological concentrations of potassium ions NHEIII(1) folds into two coexisting G4 DNA structures, myc-1245 and myc-2345, depending on which G runs are utilized for G quartet formation. We found that a single substitution of G12 of NHEIII(1) with a single abasic site or a single 8-oxoguanine prevented formation of G4 structure myc-2345 in favor of structure myc-1245, where the lesion was accommodated in a DNA loop formed by G11-AP12/(or 8-oxoG12)-G13-G14. Surprisingly, when an additional G to A base substitution was introduced at position 3 of NHEIII(1), we observed formation of myc-2345. The extent of this structural transition was modulated by the location and type of lesion within the G11-G14 repeat. Our data indicate that spontaneous lesions formed in the G4-forming sequence of c-myc NHEIII(1) affect the structural transitions occurring at this regulatory site, potentially altering transcription factor binding and DNA repair of lesions formed in this highly regulated sequence.


Subject(s)
DNA/chemistry , G-Quadruplexes , Proto-Oncogene Proteins c-myc/genetics , Bacteriophage T7/enzymology , DNA-Directed RNA Polymerases/metabolism , Guanine/analogs & derivatives , Guanine/chemistry , Humans , Promoter Regions, Genetic/genetics , Proto-Oncogene Mas
5.
DNA Repair (Amst) ; 10(8): 861-8, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21676659

ABSTRACT

The goal of the present work was to determine the impact of N3-methyladenine (3-mA), an important lesion generated by many environmental agents and anticancer drugs, on in vivo DNA replication and in vitro RNA transcription. Due to 3-mA chemical instability, the stable isostere 3-methyl-3-deazaadenine (3-m-c(3)A) was site specifically positioned into an oligodeoxynucleotide. The oligomer was, then incorporated into a vector system that is rapidly converted to ssDNA inside yeast cells and requires DNA replication opposite the lesion for plasmid clonal selection. For control purposes, an adenine or a stable apurinic/apyrimidinic (AP)-lesion was placed at the same site. The presence of each lesion in the oligonucleotide was confirmed by MALDI-TOF analysis. Plasmids were then transfected into yeast cells. While the AP-site dramatically reduced plasmid replication in all strains, the 3-m-c(3)A had a slight effect in the rad30 background which significantly increased only in a rev3rad30 background. Considering TLS events opposite 3-m-c(3)A, the lack of Polη was associated with a substantial increase in AT>GC transitions (p=0.0011), while in the absence of Polζ only events derived from an error free bypass were detected. The 3-m-c(3)A also did not affect in vitro transcription, while the AP-site was a strong block to T7 RNA progression when located in the transcribed strand. We conclude that, in these experimental systems, 3-m-c(3)A is efficiently bypassed by replication in vivo and by transcription in vitro.


Subject(s)
Adenine/analogs & derivatives , DNA Adducts/metabolism , DNA Replication , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Adenine/metabolism , Apurinic Acid/metabolism , DNA, Fungal/metabolism , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , DNA-Directed RNA Polymerases/biosynthesis , DNA-Directed RNA Polymerases/genetics , Gene Knockout Techniques , Genes, Reporter , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Viral Proteins/biosynthesis , Viral Proteins/genetics
6.
Biochemistry ; 50(19): 4162-72, 2011 May 17.
Article in English | MEDLINE | ID: mdl-21469677

ABSTRACT

Non canonical DNA structures correspond to genomic regions particularly susceptible to genetic instability. The transcription process facilitates formation of these structures and plays a major role in generating the instability associated with these genomic sites. However, little is known about how non canonical structures are processed when encountered by an elongating RNA polymerase. Here we have studied the behavior of T7 RNA polymerase (T7RNAP) when encountering a G quadruplex forming-(GGA)(4) repeat located in the human c-myb proto-oncogene. To make direct correlations between formation of the structure and effects on transcription, we have taken advantage of the ability of the T7 polymerase to transcribe single-stranded substrates and of G4 DNA to form in single-stranded G-rich sequences in the presence of potassium ions. Under physiological KCl concentrations, we found that T7 RNAP transcription was arrested at two sites that mapped to the c-myb (GGA)(4) repeat sequence. The extent of arrest did not change with time, indicating that the c-myb repeat represented an absolute block and not a transient pause to T7 RNAP. Consistent with G4 DNA formation, arrest was not observed in the absence of KCl or in the presence of LiCl. Furthermore, mutations in the c-myb (GGA)(4) repeat, expected to prevent transition to G4, also eliminated the transcription block. We show T7 RNAP arrest at the c-myb repeat in double-stranded DNA under conditions mimicking the cellular concentration of biomolecules and potassium ions, suggesting that the G4 structure formed in the c-myb repeat may represent a transcription roadblock in vivo. Our results support a mechanism of transcription-coupled DNA repair initiated by arrest of transcription at G4 structures.


Subject(s)
DNA Repair/genetics , G-Quadruplexes , Genes, myb/genetics , Transcription, Genetic , Trinucleotide Repeats/genetics , Bacteriophage T7/enzymology , Bacteriophage T7/genetics , Base Sequence , DNA-Directed RNA Polymerases/genetics , Humans , Molecular Sequence Data , Proto-Oncogene Mas , Viral Proteins/genetics
7.
Proc Natl Acad Sci U S A ; 107(29): 12816-21, 2010 Jul 20.
Article in English | MEDLINE | ID: mdl-20616059

ABSTRACT

Various DNA sequences that interfere with transcription due to their unusual structural properties have been implicated in the regulation of gene expression and with genomic instability. An important example is sequences containing G-rich homopurine-homopyrimidine stretches, for which unusual transcriptional behavior is implicated in regulation of immunogenesis and in other processes such as genomic translocations and telomere function. To elucidate the mechanism of the effect of these sequences on transcription we have studied T7 RNA polymerase transcription of G-rich sequences in vitro. We have shown that these sequences produce significant transcription blockage in an orientation-, length- and supercoiling-dependent manner. Based upon the effects of various sequence modifications, solution conditions, and ribonucleotide substitutions, we conclude that transcription blockage is due to formation of unusually stable RNA/DNA hybrids, which could be further exacerbated by triplex formation. These structures are likely responsible for transcription-dependent replication blockage by G-rich sequences in vivo.


Subject(s)
Guanine/metabolism , Transcription, Genetic , Base Composition/genetics , Base Sequence , Cations, Monovalent/pharmacology , DNA Replication/drug effects , DNA, Superhelical/genetics , DNA-Directed RNA Polymerases/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Guanosine/analogs & derivatives , Guanosine/metabolism , Inosine/metabolism , Models, Genetic , Nucleic Acid Hybridization/drug effects , Oligonucleotides/genetics , Transcription, Genetic/drug effects , Viral Proteins/genetics
8.
Mol Carcinog ; 48(4): 326-35, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19142900

ABSTRACT

Genomic DNA sequences with the ability to assume non-B form secondary structures have been recently shown to be particularly susceptible to genetic instability, an early contributing factor in human disease and cancer development. Transcription appears to play a central role in formation of these structures and in promoting instability at these sites. The subpathway of nucleotide excision DNA repair, transcription-coupled DNA repair (TCR), removes transcription-arresting damage from the transcribed strands of expressed genes, but little is known about how non-canonical DNA structures are processed when encountered by the transcription machinery. If such structures arrest transcription, they may elicit "gratuitous" TCR in which the resulting reiterative and futile repair replication might generate a significant level of mutagenesis in a frequently transcribed gene because of faulty processing in the area of transcription arrest. Here we will describe our current understanding of how TCR may be elicited at non-B DNA structures and summarize recent literature describing the behavior of RNA polymerases when encountering non-canonical DNA structures, with particular emphasis on quadruplex DNA.


Subject(s)
DNA/chemistry , DNA/genetics , G-Quadruplexes , Transcription, Genetic , Animals , Humans
9.
Nucleic Acids Res ; 36(10): 3163-70, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18400779

ABSTRACT

DNA sequences capable of forming unusual secondary structures can be a source of genomic instability. In some cases that instability might be affected by transcription, as recently shown for the Z-DNA forming sequence (CG)(14), which causes genomic instability both in mammalian cells and in bacteria, and this effect increases with its transcription. We have investigated the effect of this (CG)(14) sequence on transcription with T7 RNA polymerase in vitro. We detected partial transcription blockage within the sequence; the blockage increased with negative supercoiling of the template DNA. This effect was not observed in a control self-complementary sequence of identical length and base composition as the (CG)(14) sequence, when the purine-pyrimidine alternation required for Z-DNA formation was disrupted. These findings suggest that the inhibitory effect on T7 transcription results from Z-DNA formation in the (CG)(14) sequence rather than from an effect of the sequence composition or from hairpin formation in either the DNA or the RNA product.


Subject(s)
DNA, Z-Form/chemistry , DNA-Directed RNA Polymerases/antagonists & inhibitors , Transcription, Genetic , Viral Proteins/antagonists & inhibitors , Base Sequence , DNA, Superhelical/chemistry , Models, Genetic , Purines/chemistry , Pyrimidines/chemistry , RNA, Catalytic/chemistry
10.
J Biol Chem ; 283(19): 12756-62, 2008 May 09.
Article in English | MEDLINE | ID: mdl-18292094

ABSTRACT

DNA sequences rich in runs of guanine have the potential to form G4 DNA, a four-stranded non-canonical DNA structure stabilized by formation and stacking of G quartets, planar arrays of four hydrogen-bonded guanines. It was reported recently that G4 DNA can be generated in Escherichia coli during transcription of plasmids containing G-rich sequences in the non-transcribed strand. In addition, a stable RNA/DNA hybrid is formed with the transcribed strand. These novel structures, termed G loops, are suppressed in recQ(+) strains, suggesting that their persistence may generate genomic instability and that the RecQ helicase may be involved in their dissolution. However, little is known about how such non-canonical DNA structures are processed when encountered by an elongating polymerase. To assess whether G4-forming sequences interfere with transcription, we studied their effect on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. We used a reconstituted transcription system in vitro with purified polymerase and initiation factors and with substrates containing G-rich sequences in either the transcribed or non-transcribed strand downstream of the T7 promoter or the adenovirus major late promoter. We report that G-rich sequences located in the transcribed strand do not affect transcription by either polymerase, but when the sequences are located in the non-transcribed strand, they partially arrest both polymerases. The efficiency of arrest increases with negative supercoiling and also with multiple rounds of transcription compared with single events.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , DNA/metabolism , RNA Polymerase II/metabolism , Viral Proteins/metabolism , Animals , Base Sequence , Cattle , Rats , Ribonuclease, Pancreatic/metabolism , Substrate Specificity , Transcription, Genetic
11.
J Biol Chem ; 282(44): 32433-41, 2007 Nov 02.
Article in English | MEDLINE | ID: mdl-17785457

ABSTRACT

Naturally occurring DNA sequences that are able to form unusual DNA structures have been shown to be mutagenic, and in some cases the mutagenesis induced by these sequences is enhanced by their transcription. It is possible that transcription-coupled DNA repair induced at sites of transcription arrest might be involved in this mutagenesis. Thus, it is of interest to determine whether there are correlations between the mutagenic effects of such noncanonical DNA structures and their ability to arrest transcription. We have studied T7 RNA polymerase transcription through the sequence from the nuclease-sensitive element of the human c-MYC promoter, which is mutagenic in mammalian cells (Wang, G., and Vasquez, K. M. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 13448-13453). This element has two mirror-symmetric homopurine-homopyrimidine blocks that potentially can form either DNA triplex (H-DNA) or quadruplex structures. We detected truncated transcription products indicating partial transcription arrest within and closely downstream of the element. The arrest required negative supercoiling and was much more pronounced when the pyrimidine-rich strand of the element served as the template. The exact positions of arrest sites downstream from the element depended upon the downstream flanking sequences. We made various nucleotide substitutions in the wild-type sequence from the c-MYC nuclease-sensitive element that specifically destabilize either the triplex or the quadruplex structure. When these substitutions were ranked for their effects on transcription, the results implicated the triplex structure in the transcription arrest. We suggest that transcription-induced triplex formation enhances pre-existing weak transcription pause sites within the flanking sequences by creating steric obstacles for the transcription machinery.


Subject(s)
DNA/metabolism , Genes, myc , Nucleic Acid Conformation , Promoter Regions, Genetic , Transcription, Genetic , Base Sequence , DNA, Superhelical/metabolism , DNA-Directed RNA Polymerases/metabolism , Humans , Models, Biological , Viral Proteins/metabolism
12.
Chem Res Toxicol ; 19(9): 1215-20, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16978026

ABSTRACT

A dedicated excision repair pathway, termed transcription-coupled repair (TCR), targets the removal of DNA lesions from transcribed strands of expressed genes. Transcription arrest at the site of the lesion has been proposed as the first step for initiation of TCR. In support of this model, a strong correlation between arrest of transcription by a lesion in vitro and TCR of that lesion in vivo has been found in most cases analyzed. TCR has been reported for oxidative DNA damage; however, very little is known about how frequently occurring and spontaneous DNA damage, such as depurination and base deamination, affects progression of the transcription complex. We have previously determined that the oxidative lesion, thymine glycol, is a significant block to transcription by T7 RNA polymerase (T7 RNAP) but has no detectable effect on transcription by RNA polymerase II (RNAP II) in a reconstituted system with all of the required factors. Another oxidative lesion, 8-oxoguanine, only slightly blocked T7 RNAP and caused RNAP II to briefly pause at the lesion before bypassing it. Because an abasic site is an intermediate in the repair of oxidative damage, it was of interest to learn whether it arrested transcription. Using in vitro transcription assays and substrates containing a specifically positioned lesion, we found that an abasic site in the transcribed strand is a 60% block to transcription by T7 RNAP but nearly a complete block to transcription by mammalian RNAP II. An abasic site in the nontranscribed strand did not block either polymerase. Our results clearly indicate that an abasic site is a much stronger block to transcription than either a thymine glycol or an 8-oxoguanine. Because the predominant model for TCR postulates that only lesions that block RNAP will be subject to TCR, our findings suggest that the abasic site may be sufficient to initiate TCR in vivo.


Subject(s)
DNA/genetics , Transcription, Genetic , Base Sequence , DNA/chemistry , DNA Primers , Hydrolysis , RNA Polymerase II/genetics , Templates, Genetic
13.
Chem Res Toxicol ; 19(2): 234-41, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16485899

ABSTRACT

2-Deoxyribonolactone (dL) is an oxidized abasic site in DNA that can be induced by gamma-radiolysis, ultraviolet irradiation, and numerous antitumor drugs. Although this lesion is incised by AP endonucleases, suggesting a base-excision repair mechanism for dL removal, subsequent excision and repair synthesis by DNA polymerase beta is inhibited due to accumulation of a protein-DNA cross-link. This raises the possibility that additional repair pathways might be required to eliminate dL from the genome. Transcription-coupled repair (TCR) is a pathway of excision repair specific to DNA lesions present in transcribed strands of expressed genes. A current model proposes that transcription arrest at the site of DNA damage is required to initiate TCR. In support of this model, a strong correlation between transcription arrest by a lesion in vitro and TCR of the lesion in vivo has been found in most cases analyzed. To assess whether dL might be subject to TCR, we have studied the behavior of bacteriophage T3 and T7 RNA polymerases (T3RNAP, T7RNAP) and of mammalian RNA polymerase II (RNAPII) when they encounter a dL lesion or its "caged" precursor located either in the transcribed or in the nontranscribed strand of template DNA. DNA plasmids containing a specifically located dL downstream of the T3, T7 promoter or the Adenovirus major late promoter were constructed and used for in vitro transcription with purified proteins. We found that both dL and its caged precursor located in the transcribed strand represented a complete block to transcription by T3- and T7RNAP. Similarly, they caused more than 90% arrest when transcription was carried out with mammalian RNAPII. Furthermore, RNAPII complexes arrested at dL were subject to the transcript cleavage reaction mediated by elongation factor TFIIS, indicating that these complexes were stable. A dL in the nontranscribed strand did not block either polymerase.


Subject(s)
DNA/drug effects , Sugar Acids/pharmacology , Transcription, Genetic/drug effects , Animals , Bacteriophage T3/enzymology , Bacteriophage T7/enzymology , DNA/genetics , DNA Damage , DNA Repair , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/genetics , In Vitro Techniques , Liver/enzymology , RNA Polymerase II/antagonists & inhibitors , RNA Polymerase II/genetics , Rats , Transcription, Genetic/genetics
14.
DNA Repair (Amst) ; 4(10): 1075-87, 2005 Sep 28.
Article in English | MEDLINE | ID: mdl-16046193

ABSTRACT

Upon prolonged arrest at a cyclobutane pyrimidine dimer (CPD), RNAPII can reverse-translocate, misaligning the 3'-end of the RNA from its active site. Transcription factor SII (TFIIS) is required for cleavage of the disengaged 3'-end and restoration of its correct positioning. We have previously shown in vitro that when RNAPII is arrested at a CPD, TFIIS-induced cleavage results in shortened transcripts. Here, we hypothesized that the pattern of transcript cleavage does not depend solely upon TFIIS itself, but also on some other general transcription factors (GTFs) and/or their effects on RNAPII. To test this hypothesis we compared three in vitro transcription systems which differ with respect to the mode of initiation and the requirement for GTFs. The first consisted of RNAPII and GTFs from rat liver, and required a eukaryotic promoter for initiation. The other two supported transcription in the absence of any GTFs or promoter sequences. In each case, a CPD on the transcribed strand was a complete block for RNAPII translocation. However, the effect of TFIIS on transcript cleavage varied. In the promoter-initiated system, distinct transcripts up to about 20 nucleotides shorter than the uncleaved original one were produced. In the other two systems, the transcripts were degraded nearly completely. Introduction of GTFs partially interfered with cleavage, but failed to reproduce the pattern of transcript lengths observed with the promoter-initiated system. Our results suggest that the extent of TFIIS-mediated transcript cleavage is a well-orchestrated process, depending upon other factors (or their effects on RNAPII), in addition to TFIIS itself.


Subject(s)
DNA Damage , RNA Polymerase II/metabolism , Transcription Factors, General/metabolism , Transcription, Genetic , Transcriptional Elongation Factors/metabolism , Animals , Base Sequence , Molecular Sequence Data , Promoter Regions, Genetic , Protein Conformation , Pyrimidine Dimers/chemistry , RNA Polymerase II/chemistry , RNA, Messenger/chemistry , Rats , Transcription Factors, General/chemistry , Transcriptional Elongation Factors/chemistry
15.
Mutat Res ; 577(1-2): 131-45, 2005 Sep 04.
Article in English | MEDLINE | ID: mdl-15904937

ABSTRACT

Transcription arrest by RNA polymerase II at a DNA damage site on the transcribed strand is considered an essential step in initiation of transcription-coupled repair (TCR), a specialized repair pathway, which specifically removes lesions from transcribed strands of expressed genes. To understand how initiation of TCR occurs, it is necessary to characterize the properties of the transcription complex when it encounters a lesion in its path. The analysis of different types of arrested complexes should help us understand how an arrested RNA polymerase may signal the repair proteins to initiate a repair event. This article will review the recent literature describing how the presence of DNA damage along the DNA affects transcription elongation by RNA polymerase II and its implications for the initial steps of TCR.


Subject(s)
DNA Damage , Transcription, Genetic , DNA Repair
16.
Proc Natl Acad Sci U S A ; 101(19): 7275-80, 2004 May 11.
Article in English | MEDLINE | ID: mdl-15123825

ABSTRACT

Malondialdehyde, a genotoxic byproduct of lipid peroxidation, reacts with guanine in DNA to form pyrimido[1,2-alpha]purin-10(3H)one (M(1)dG), the first endogenous DNA lesion found to be a target of nucleotide excision repair enzymes. A subpathway of nucleotide excision repair, transcription-coupled repair, is thought to occur when RNA polymerase (RNAP) is arrested at damage in transcribed DNA strands and might function for efficient removal of M(1)dG in active genes. Results presented here show that M(1)dG and its stable, exocyclic analog 1,N(2)-propanodeoxyguanine (PdG), arrest translocation of T7 RNAP and mammalian RNAPII when located in the transcribed strand of a DNA template. M(1)dG paired with thymine is exocyclic and poses a stronger block to transcription than the acyclic N(2)-(3-oxo-1-propenyl)-dG, formed upon cytosine-catalyzed opening of M(1)dG in duplex DNA. PdG is a complete block to RNAPII regardless of base pairing. The elongation factor TFIIS (SII) induces reversal and RNA transcript cleavage by RNAPII arrested at PdG. Thus, arrested RNAPII complexes may be stable at M(1)dG in cells and may resume transcription once the offending adduct is removed. The conclusion from this work is that malondialdehyde adducts in the transcribed strand of expressed genes are strong blocks to RNAPs and are targets for cellular transcription-coupled repair. If so, then M(1)dG, already known to be highly mutagenic in human cells, also may contribute to apoptosis in the developing tissues of individuals with Cockayne's syndrome, a hereditary disorder characterized by transcription-coupled repair deficiency.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , DNA/genetics , Malondialdehyde/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic , Animals , Base Sequence , DNA Primers , Viral Proteins
17.
DNA Repair (Amst) ; 3(5): 483-94, 2004 May 04.
Article in English | MEDLINE | ID: mdl-15084310

ABSTRACT

8-Oxoguanine (8-oxoG) is a major oxidative lesion produced in DNA by normal cellular metabolism or after exposure to exogenous sources such as ionizing radiation. Persistence of this lesion in DNA causes G to T transversions, with deleterious consequences for the cell. As a result, several repair processes have evolved to remove this lesion from the genome. It has been reported that 8-oxoG is subject to transcription-coupled repair (TCR), a process dedicated to removal of lesions from transcribed strands of expressed genes. A current model assumes that RNA polymerase arrest at the site of the lesion is required for initiation of TCR. As a first step to understand how TCR of 8-oxoG occurs, we have studied the effect of 8-oxoG on transcription elongation by T7 RNA polymerase (T7 RNAP) and rat liver RNA polymerase II (RNAPII). We have utilized an in vitro transcription system with purified RNA polymerase and initiation factors, and substrates containing a single 8-oxoG in the transcribed or in the non-transcribed strand downstream of the T7 promoter or the Adenovirus major late promoter. We found that 8-oxoG only slightly inhibited T7 RNAP transcription, with a readthrough frequency of up to 95%. Similarly, this lesion only transiently blocked transcription by RNAPII. However, changes in nucleotide concentration affected the extent of RNAPII blockage at the 8-oxoG. When this lesion was positioned in the non-transcribed strand, complete lesion bypass was observed with either polymerase. Binding of the Saccharomyces cerevisiae MSH2-MSH6 complex to 8-oxoG containing substrates did not increase the frequency of RNAPII arrest at the site of the lesion, suggesting that this complex was displaced by the elongating polymerase. These results are discussed in the context of possible models for TCR.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Guanine/analogs & derivatives , Guanine/pharmacology , RNA Polymerase II/metabolism , Transcription, Genetic/drug effects , Animals , Base Sequence , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA-Binding Proteins/metabolism , MutS Homolog 2 Protein , Protein Binding , Proto-Oncogene Proteins/metabolism , Rats , Templates, Genetic , Viral Proteins
18.
J Biol Chem ; 278(37): 35791-7, 2003 Sep 12.
Article in English | MEDLINE | ID: mdl-12829693

ABSTRACT

Transcription-coupled DNA repair is dedicated to the removal of DNA lesions from transcribed strands of expressed genes. RNA polymerase arrest at a lesion has been proposed as a sensitive signal for recruitment of repair enzymes to the lesion site. To understand how initiation of transcription-coupled repair may occur, we have characterized the properties of the transcription complex when it encounters a lesion in its path. Here we have compared the effect of cisplatin-induced intrastrand cross-links on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. We found that a single cisplatin 1,2-d(GG) intrastrand cross-link or a single cisplatin 1,3-d(GTG) intrastrand cross-link is a strong block to both polymerases. Furthermore, the efficiency of the block at a cisplatin 1,2-d(GG) intrastrand cross-link was similar in several different nucleotide sequence contexts. Interestingly, some blockage was also observed when the single cisplatin 1,3-d(GTG) intrastrand cross-link was located in the non-transcribed strand. Transcription complexes arrested at the cisplatin adducts were substrates for the transcript cleavage reaction mediated by the elongation factor TFIIS, indicating that the RNA polymerase II complexes arrested at these lesions are not released from template DNA. Addition of TFIIS yielded a population of transcripts up to 30 nucleotides shorter than those arrested at the lesion. In the presence of nucleoside triphosphates, these shortened transcripts could be re-elongated up to the site of the lesion, indicating that the arrested complexes are stable and competent to resume elongation. These results show that cisplatin-induced lesions in the transcribed DNA strand constitute a strong physical barrier to RNA polymerase progression, and they support current models of transcription arrest and initiation of transcription-coupled repair.


Subject(s)
Cisplatin/pharmacology , DNA Damage , DNA Repair/physiology , DNA-Directed RNA Polymerases/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic/drug effects , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Animals , Bacteriophage T7/enzymology , Base Sequence , DNA Damage/drug effects , DNA Repair/drug effects , Liver/enzymology , Mammals , Molecular Sequence Data , Rats , Templates, Genetic , Viral Proteins
19.
J Biol Chem ; 278(21): 19558-64, 2003 May 23.
Article in English | MEDLINE | ID: mdl-12646562

ABSTRACT

Cis-syn cyclobutane pyrimidine dimers (CPDs) are the most frequently formed lesions in UV-irradiated DNA. CPDs are repaired by the nucleotide excision repair pathway. Additionally, they are subject to transcription-coupled DNA repair. In the general model for transcription-coupled DNA repair, an RNA polymerase arrested at a lesion on the transcribed DNA strand facilitates repair by recruiting the repair machinery to the site of the lesion. Consistent with this model, transcription experiments in vitro have shown that CPDs in the transcribed DNA strand interfere with the translocation of prokaryotic and eukaryotic RNA polymerases. Here, we study the behavior of RNA polymerase when transcribing a template that contains two closely spaced lesions, one on each DNA strand. Similar DNA templates containing no CPD, or a single CPD on either the transcribed or the nontranscribed strand were used as controls. Using an in vitro transcription system with purified T7 RNA polymerase (T7 RNAP) or rat liver RNAP II, we characterized transcript length and efficiency of transcription in vitro. We also tested the sensitivity of the arrested RNAP II-DNA-RNA ternary complex, at a CPD in the transcribed strand, to transcription factor TFIIS. The presence of a nearby CPD in the nontranscribed strand did not affect the behavior of either RNA polymerase nor did it affect the reverse translocation ability of the RNAP II-arrested complex. Our results additionally indicate that the sequence context of a CPD affects the efficiency of T7 RNAP arrest more significantly than that of RNAP II.


Subject(s)
DNA Damage/genetics , DNA/genetics , Transcription, Genetic , Transcriptional Elongation Factors , Animals , Base Sequence , DNA/chemistry , DNA/metabolism , DNA Repair , DNA-Directed RNA Polymerases/metabolism , Liver/enzymology , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Pyrimidine Dimers/chemistry , Pyrimidine Dimers/metabolism , RNA/metabolism , RNA Polymerase II/metabolism , Rats , Templates, Genetic , Transcription Factors, General/metabolism , Ultraviolet Rays , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL