Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 7: 273, 2020.
Article in English | MEDLINE | ID: mdl-32509808

ABSTRACT

Canine leishmaniasis (CanL) is a disease characterized by a large variety of clinical alterations, the majority of which being due to immune mediated mechanisms. Sick dogs usually produce high levels of Leishmania-specific immunoglobulins which may give rise to circulating immune complexes (CICs) whose defective clearance by scavenging macrophages induces vasculitis and their deposition in specific organs. The aim of this study was to assess the serum level of CICs in dogs exposed to natural and experimental infection. Fifty-two sera were examined, belonging to untreated groups of naïve beagles previously studied to assess the performance of anti-leishmanial vaccines under natural (no. 22 dogs) or experimental (no. 30 dogs) transmission. Sera were classified in five groups according to the dog's health condition, IFAT titer, and the bone marrow (BM) nested (n)-PCR result. A: no.10 healthy dogs before the experimental infection; B: no.10 clinically healthy dogs infected experimentally, IFAT negative (= reciprocal titer <160) and n-PCR positive; C: no.10 clinically healthy dogs naturally infected, IFAT positive at titers 160-320 and n-PCR negative; D: no.10 sick dogs experimentally infected, IFAT positive at titer >320 and n-PCR positive; E: no.12 sick dogs naturally infected, IFAT positive at titer >320 and n-PCR positive. CICs levels were assessed by ELISA method (canine CIC assay-Cloude-Clone Corporation, USA). The two groups characterized by negative IFAT (A and B) had the lowest median level of CICs (16.09 and 12.78 µg/ml, respectively). CICs value increased progressively in the group C and reached the highest levels in the groups D and E, both characterized by high antibodies titer and severe disease, independently from the mode of infection. Significant differences in CICs concentration (p < 0.0001) were demonstrated between A, B, and C groups when compared with D or E groups of dogs. No differences were found inside the first three groups, while differences were recorded between the last two groups of sick dogs. CICs serum concentration increased with the progress of leishmaniasis, being significantly correlated with the increase of specific antibodies over time. High CICs levels detectable by commercial ELISA proved specific to an established Leishmania infection in dogs in the absence of other concomitant infections, as demonstrated by the similar trend assessed in experimentally and naturally infected dogs.

2.
Int J Dev Biol ; 49(7): 895-9, 2005.
Article in English | MEDLINE | ID: mdl-16172988

ABSTRACT

Cnidarians are primitive animals located in a basal position in the phylogenetic tree of the Animal Kingdom, as an outgroup of the Bilaterians. Therefore, studies on cnidarian developmental biology may illustrate how fundamental developmental processes have originated and changed during animal evolution. A particular example of this is the establishment of polarity along the body axes, which is under the control of a number of developmental genes, most of them conserved in evolution and playing similar roles in diverged species. Concerning the anterior-posterior axis, genetic and molecular studies on Drosophila have shown that the nanos gene plays an essential role in defining posterior structures during early embryonic development. Here we report the isolation of two nanos orthologs in the anthozoan Nematostella vectensis. We show that nanos mRNA is asymmetrically distributed in the fertilized egg and this asymmetry is maintained during embryonic development. At gastrula and planula larva stages, nanos expression is permanently associated with posterior body regions. These results, together with our previous analysis in the hydrozoan Podocoryne carnea, indicate that posterior nanos expression during development is a conserved feature among cnidarians. Therefore, the potential role of cnidarian nanos in defining axial polarity as a posterior determinant would represent an ancestral trait in the Animal Kingdom.


Subject(s)
Anthozoa/embryology , Anthozoa/growth & development , Gene Expression Regulation, Developmental , Larva/growth & development , Larva/metabolism , RNA-Binding Proteins/metabolism , Amino Acid Sequence , Animals , Anthozoa/chemistry , Anthozoa/metabolism , Molecular Sequence Data , Phylogeny , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Sequence Alignment , Sequence Homology, Amino Acid
3.
Evol Dev ; 6(5): 362-71, 2004.
Article in English | MEDLINE | ID: mdl-15330869

ABSTRACT

Summary The distinction between soma and germline is an important process in the development of animals with sexual reproduction. It is regulated by a number of germline-specific genes, most of which appear conserved in evolution and therefore can be used to study the formation of the germline in diverged animal groups. Here we report the isolation of two orthologs of one such gene, nanos (nos), in the cnidarian Podocoryne carnea, a species with representative zoological features among the hydrozoans. By studying nos gene expression throughout the Podocoryne biphasic life cycle, we find that the germline differentiates exclusively during medusa development, whereas the polyp does not contribute to the process. An early widespread nos expression in developing medusae progressively refines into a mainly germline-specific pattern at terminal stages of medusa formation. Thus, the distinction between germline and soma is a late event in hydrozoan development. Also, we show that the formation of the medusa is a de novo process that relies on active local cell proliferation and differentiation of novel cell and tissue types not present in the polyp, including nos-expressing cells. Finally, we find nos expression at the posterior pole of Podocoryne developing embryos, not related to germline formation. This second aspect of nos expression is also found in Drosophila, where nos functions as a posterior determinant essential for the formation of the fly abdomen. This raises the possibility that nos embryonic expression could play a role in establishing axial polarity in cnidarians.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental , Germ Cells/metabolism , Hydrozoa/metabolism , Life Cycle Stages/physiology , Amino Acid Sequence , Animals , Base Sequence , DNA Primers , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Genes, Duplicate/genetics , Histones , Hydrozoa/genetics , Immunohistochemistry , In Situ Hybridization , Likelihood Functions , Mitosis/physiology , Models, Genetic , Molecular Sequence Data , Phylogeny , Reproduction/physiology , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA , Zinc Fingers/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...