Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Animals (Basel) ; 14(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612372

ABSTRACT

Biosecurity practices aim to reduce the frequency of disease outbreaks in a farm, region, or country and play a pivotal role in fortifying the country's pork industry against emerging threats, particularly foreign animal diseases (FADs). This article addresses the current biosecurity landscape of the US swine industry by summarizing the biosecurity practices reported by the producers through the United States Swine Health Improvement Plan (US SHIP) enrollment surveys, and it provides a general assessment of practices implemented. US SHIP is a voluntary, collaborative effort between industry, state, and federal entities regarding health certification programs for the swine industry. With 12,195 sites surveyed across 31 states, the study provides a comprehensive snapshot of current biosecurity practices. Key findings include variability by site types that have completed Secure Pork Supply plans, variability in outdoor access and presence of perimeter fencing, and diverse farm entry protocols for visitors. The data also reflect the industry's response to the threat of FADs, exemplified by the implementation of the US SHIP in 2020. As the US SHIP program advances, these insights will guide industry stakeholders in refining biosecurity practices, fostering endemic re-emerging and FAD preparedness, and ensuring the sustainability of the swine industry in the face of evolving challenges.

2.
Microbiol Spectr ; 12(4): e0218123, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38446039

ABSTRACT

Novel H1N2 and H3N2 swine influenza A viruses (IAVs) have recently been identified in Chile. The objective of this study was to evaluate their zoonotic potential. We perform phylogenetic analyses to determine the genetic origin and evolution of these viruses, and a serological analysis to determine the level of cross-protective antibodies in the human population. Eight genotypes were identified, all with pandemic H1N1 2009-like internal genes. H1N1 and H1N2 were the subtypes more commonly detected. Swine H1N2 and H3N2 IAVs had hemagglutinin and neuraminidase lineages genetically divergent from IAVs reported worldwide, including human vaccine strains. These genes originated from human seasonal viruses were introduced into the swine population since the mid-1980s. Serological data indicate that the general population is susceptible to the H3N2 virus and that elderly and young children also lack protective antibodies against the H1N2 strains, suggesting that these viruses could be potential zoonotic threats. Continuous IAV surveillance and monitoring of the swine and human populations is strongly recommended.IMPORTANCEIn the global context, where swine serve as crucial intermediate hosts for influenza A viruses (IAVs), this study addresses the pressing concern of the zoonotic potential of novel reassortant strains. Conducted on a large scale in Chile, it presents a comprehensive account of swine influenza A virus diversity, covering 93.8% of the country's industrialized swine farms. The findings reveal eight distinct swine IAV genotypes, all carrying a complete internal gene cassette of pandemic H1N1 2009 origin, emphasizing potential increased replication and transmission fitness. Genetic divergence of H1N2 and H3N2 IAVs from globally reported strains raises alarms, with evidence suggesting introductions from human seasonal viruses since the mid-1980s. A detailed serological analysis underscores the zoonotic threat, indicating susceptibility in the general population to swine H3N2 and a lack of protective antibodies in vulnerable demographics. These data highlight the importance of continuous surveillance, providing crucial insights for global health organizations.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Child , Humans , Animals , Swine , Child, Preschool , Aged , Influenza A virus/genetics , Influenza A Virus, H3N2 Subtype/genetics , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Influenza A Virus, H1N1 Subtype/genetics , Phylogeny , Chile/epidemiology , Reassortant Viruses/genetics , Swine Diseases/epidemiology , Influenza, Human/epidemiology
3.
Front Vet Sci ; 10: 1291312, 2023.
Article in English | MEDLINE | ID: mdl-38033641

ABSTRACT

Transmission of infectious agents via aerosols is an ever-present concern in animal agriculture production settings, as the aerosol route to disease transmission can lead to difficult-to-control and costly diseases, such as porcine respiratory and reproductive syndrome virus and influenza A virus. It is increasingly necessary to implement control technologies to mitigate aerosol-based disease transmission. Here, we review currently utilized and prospective future aerosol control technologies to collect and potentially inactivate pathogens in aerosols, with an emphasis on technologies that can be incorporated into mechanically driven (forced air) ventilation systems to prevent aerosol-based disease spread from facility to facility. Broadly, we find that control technologies can be grouped into three categories: (1) currently implemented technologies; (2) scaled technologies used in industrial and medical settings; and (3) emerging technologies. Category (1) solely consists of fibrous filter media, which have been demonstrated to reduce the spread of PRRSV between swine production facilities. We review the mechanisms by which filters function and are rated (minimum efficiency reporting values). Category (2) consists of electrostatic precipitators (ESPs), used industrially to collect aerosol particles in higher flow rate systems, and ultraviolet C (UV-C) systems, used in medical settings to inactivate pathogens. Finally, category (3) consists of a variety of technologies, including ionization-based systems, microwaves, and those generating reactive oxygen species, often with the goal of pathogen inactivation in aerosols. As such technologies are typically first tested through varied means at the laboratory scale, we additionally review control technology testing techniques at various stages of development, from laboratory studies to field demonstration, and in doing so, suggest uniform testing and report standards are needed. Testing standards should consider the cost-benefit of implementing the technologies applicable to the livestock species of interest. Finally, we examine economic models for implementing aerosol control technologies, defining the collected infectious particles per unit energy demand.

4.
Prev Vet Med ; 217: 105976, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37467679

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) infections greatly impact the health and productivity of growing pigs. The introduction and persistence of wild-type PRRSV (WT-PRRSV) strains in growing pig populations is poorly understood. In an observational prospective cohort study, we monitored and surveyed 63 wean-to-finish (WTF) herds across 10 companies located in medium to high pig dense areas in the U.S. Midwest. All herds received weaned pigs from PRRSV-negative or positive-stable breeding herds. Herds were monitored monthly using oral fluids collected following a fixed spatial sampling regime and samples were tested by PRRSV ELISA, RT-PCR and ORF5 sequencing. In most (90%) of the herds, pigs were vaccinated with PRRSV modified-live vaccines either at processing, weaning or shortly after weaning. Wild type PRRSV (WT-PRRSV) infections were defined by the criterion of having more than 2% nucleotide differences in the ORF-5 region compared with reference vaccine strain sequences. Wild type PRRSV was detected in 42% of the herds with infections being more prevalent in the mid to late growing period, with a mean of 20 weeks post placement. Nineteen distinct WT-PRRSV were identified in seven out of 10 production companies with an average of 3 distinct WT-PRRSV strains per company. Vaccinated WTF herds with and without WT-PRRSV detection were compared to each other showing different PCR and ELISA infection patterns. Close-out mortality in vaccinated herds with WT-PRRSV was numerically higher (6.5%) than mortality in those sites where WT-PRRSV was not detected (5.0%) (p = 0.07). Mortality was also higher (10.5%) when WT-PRRSV was detected earlier at eight weeks post-placement compared to late finishing at 20 and 25 weeks post-placement, 2.9% and 4.5% respectively (p = 0.017). Overall, this study sheds light on WT-PRRSV infection dynamics in vaccinated populations of growing pigs, reinforces the importance of biosecurity practices in this phase of production and calls for better understanding of risk factors associated with PRRSV introductions in growing pig sites.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Animals , Antibodies, Viral , Incidence , Polymerase Chain Reaction/veterinary , Porcine Reproductive and Respiratory Syndrome/epidemiology , Prospective Studies , Swine
5.
Porcine Health Manag ; 9(1): 13, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37183258

ABSTRACT

Indirect transmission of influenza A virus (IAV) contributes to virus spread in pigs. To identify farm management activities with the ability to contaminate farmworkers' hands and clothing that then could be a source of virus spread to other pigs, we conducted a within-farm, prospective IAV surveillance study. Hands and clothes from farmworkers performing the activities of piglet processing, vaccination, or weaning were sampled before and after the activities were performed. Samples were tested by IAV rRT-PCR and virus viability was assessed by cell culture. A multivariate generalized linear model was used to detect associations of the activities with IAV contamination. Of the samples collected for IAV rRT-PCR testing, there were 16% (12/76) collected immediately after processing, 96% (45/48) collected after vaccination, and 94% (29/31) collected after weaning that tested positive. Samples collected immediately after vaccination and weaning, i.e., activities that took place during the peri-weaning period when pigs were about 3 weeks of age, had almost 6 times higher risk of IAV detection and had more samples IAV positive (p-value < 0.0001) than samples collected after processing, i.e., an activity that took place in the first few days of life. Both, hands and clothes had similar contamination rates (46% and 55% respectively, p-value = 0.42) and viable virus was isolated from both. Our results indicate that activities that involve the handling of infected piglets close to weaning age represent a significant risk for IAV dissemination due to the high level of IAV contamination found in farmworkers' hands and coveralls involved in the activities. Biosecurity protocols that include hand sanitation and changing clothing after performing activities with a high-risk of influenza contamination should be recommended to farmworkers to control and limit the mechanical spread of IAV between pigs.

6.
BMC Vet Res ; 18(1): 393, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36348373

ABSTRACT

BACKGROUND: Influenza A virus (IAV) is an important respiratory pathogen of pigs that affects pig health, well-being and productivity, has zoonotic potential, and has significant economic impact for producers. The ultimate goal is to maintain herds free from IAV. Due to the probability of IAV introduction into the herds, it is also desirable for herds to have some immunity to the virus. In this study, we evaluated a protocol that combined sow vaccination with the implementation of internal biosecurity practices during the pre-weaning period with the goal to wean IAV negative pigs. Five IAV positive breeding herds were vaccinated twice, 3 weeks apart with a herd-specific autogenous vaccine. For the subsequent 8 weeks, a biosecurity protocol was maintained, consisting of no pig movements after 3 days of age, no use of nurse sows, workers changing disposable gloves between litters, workers not stepping into farrowing crates, and daily disinfection of tools and materials used to handle pigs. RESULTS: Following these interventions, four of the five treatment farms had significant reductions in IAV detection (p value < 0.05). Three of the farms tested negative at all sampling points post-intervention and one farm had a 21% reduction in IAV positivity. CONCLUSIONS: This study indicates that a protocol that combines sow vaccination and enhanced biosecurity practices may limit IAV transmission among piglets and enable the weaning of groups of pigs free from the virus.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , Swine Diseases , Animals , Swine , Female , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Farms , Weaning , Biosecurity , Vaccination/veterinary
7.
Prev Vet Med ; 208: 105764, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36181751

ABSTRACT

Influenza is an important respiratory disease of pigs and humans. Controlling influenza in pigs is challenging due to the substantial genetic diversity of influenza A virus (IAV). In this study, we assessed the impact of internal biosecurity practices directed at limiting exposure of piglets to IAV before weaning; evaluated the association of sow parity with IAV prevalence in piglets and the levels of maternally derived antibodies (MDA), and documented the frequency of detection of IAV on farmworkers' hands and the instruments used when handling pigs. The control group included litters in rooms where no specific changes were made to standard farm procedures. The treatment group included litters in rooms where no cross-fostering or nurse sows use was allowed, and where farmworkers were required to change gloves between litters when handling pigs. Both, younger (≤ Parity 3) and older parity sows (>Parity 3) were represented in all rooms included in the study. Overall, litters in the treatment group had lower IAV prevalence (29.9 %) than litters in the control group (44.2 %) (p < 0.001), and at day 8 of age the litters from the control group had 7.5 times higher IAV prevalence than the litters from the treatment group. However, at weaning differences were not found (77.2 % vs. 81 % for treatment vs. control, respectively, p = 0.41). There were no differences in IAV detection between parity groups at any of the sampling points (p = 0.86) and incidence of detection in sows from farrowing to weaning was 29 %. Piglets that tested ELISA negative were 1.3 times more likely to test IAV positive than piglets that were ELISA positive for IAV antibody test, suggesting that effective colostrum intake may reduce the likelihood of infection. IAV was detected on 46 % of the instruments used when handling piglets and on 58 % of farmworkers' hands, indicating the potential risk for mechanical transmission of IAV in pigs. Overall, we showed that the implementation of internal biosecurity practices that limit IAV exposure to newborn piglets helped delay IAV infections but were not sufficient to reduce the prevalence of IAV infection in litters at weaning.


Subject(s)
Influenza A virus , Influenza, Human , Swine Diseases , Pregnancy , Humans , Swine , Animals , Female , Weaning , Parity , Swine Diseases/epidemiology , Swine Diseases/prevention & control , Biosecurity
8.
Elife ; 112022 09 02.
Article in English | MEDLINE | ID: mdl-36052992

ABSTRACT

Although vaccination is broadly used in North American swine breeding herds, managing swine influenza is challenging primarily due to the continuous evolution of influenza A virus (IAV) and the ability of the virus to transmit among vaccinated pigs. Studies that have simultaneously assessed the impact of vaccination on the emergence of IAV reassortment and genetic variation in pigs are limited. Here, we directly sequenced 28 bronchoalveolar lavage fluid (BALF) samples collected from vaccinated and unvaccinated pigs co-infected with H1N1 and H3N2 IAV strains, and characterized 202 individual viral plaques recovered from 13 BALF samples. We identified 54 reassortant viruses that were grouped in 17 single and 16 mixed genotypes. Notably, we found that prime-boost vaccinated pigs had less reassortant viruses than nonvaccinated pigs, likely due to a reduction in the number of days pigs were co-infected with both challenge viruses. However, direct sequencing from BALF samples revealed limited impact of vaccination on viral variant frequency, evolutionary rates, and nucleotide diversity in any IAV coding regions. Overall, our results highlight the value of IAV vaccination not only at limiting virus replication in pigs but also at protecting public health by restricting the generation of novel reassortants with zoonotic and/or pandemic potential.


Swine influenza A viruses cause severe illness among pigs and financial losses on pig farms worldwide. These viruses can also infect humans and have caused deadly human pandemics in the past. Influenza A viruses are dangerous because viruses can be transferred between humans, birds and pigs. These co-infections can allow the viruses to swap genetic material. Viral genetic exchanges can result in new virus strains that are more dangerous or that can infect other types of animals more easily. Farmers vaccinate their pigs to control the swine influenza A virus. The vaccines are regularly updated to match circulating virus strains. But the virus evolves rapidly to escape vaccine-induced immunity, and infections are common even in vaccinated pigs. Learning about how vaccination affects the evolution of influenza A viruses in pigs could help scientists prevent outbreaks on pig farms and avoid spillover pandemics in humans. Li et al. show that influenza A viruses are less likely to swap genetic material in vaccinated and boosted pigs than in unvaccinated animals. In the experiments, Li et al. collected swine influenza A samples from the lungs of pigs that had received different vaccination protocols. Next, Li et al. used next-generation sequencing to identify new mutations in the virus or genetic swaps among different strains. In pigs infected with both the H1N1 and H3N2 strains of influenza, the two viruses began trading genes within a week. But less genetic mixing occurred in vaccinated and boosted pigs because they spent less time infected with both viruses than in unvaccinated pigs. The vaccination status of the pig did not have much effect on how many new mutations occurred in the viruses. The experiments show that vaccinating and boosting pigs against influenza A viruses may protect against genetic swapping among influenza viruses. If future studies on pig farms confirm the results, the information gleaned from the study could help scientists improve farm vaccine protocols to further reduce influenza risks to animals and people.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Orthomyxoviridae Infections , Swine Diseases , Animals , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza A virus/genetics , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Reassortant Viruses/genetics , Swine , Swine Diseases/prevention & control , Vaccination/veterinary
9.
Zoonoses Public Health ; 69(5): 560-571, 2022 08.
Article in English | MEDLINE | ID: mdl-35445551

ABSTRACT

Interspecies transmission of influenza A virus (IAV) between pigs and people represents a threat to both animal and public health. To better understand the risks of influenza transmission at the human-animal interface, we evaluated 1) the rate of IAV detection in swine farmworkers before and after work during two human influenza seasons, 2) assessed risk factors associated with IAV detection in farmworkers and 3) characterized the genetic sequences of IAV detected in both workers and pigs. Of 58 workers providing nasal passage samples during 8-week periods during the 2017/18 and 2018/19 influenza seasons, 33 (57%) tested positive by rRT-PCR at least once. Sixteen (27%) workers tested positive before work and 24 (41%) after work. At the sample level, 58 of 1,785 nasal swabs (3.2%) tested rRT-PCR positive, of which 20 of 898 (2.2%) were collected prior to work and 38 of 887 (4.3%) after work. Although farmworkers were more likely to test positive at the end of the working day (OR = 1.98, 95% CI 1.14-3.41), there were no influenza-like illness (ILI) symptoms, or other risk indicators, associated with IAV detection before or after reporting to work. Direct whole-genome sequencing from samples obtained from worker nasal passages indicated evidence of infection of a worker with pandemic 2009 H1N1 of human-origin IAV (H1-pdm 1A 3.3.2) when reporting to work, and exposure of several workers to a swine-origin IAV (H1-alpha 1A 1.1) circulating in the pigs on the farm where they were employed. Our study provides evidence of 1) risk of IAV transmission between pigs and people, 2) pandemic H1N1 IAV infected workers reporting to work and 3) workers exposed to swine harbouring swine-origin IAV in their nasal passages temporarily. Overall, our results emphasize the need to implement surveillance and transmission preventive protocols at the pig/human interface.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , Farmers , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A virus/genetics , Influenza, Human/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Swine
10.
J Vet Diagn Invest ; 34(1): 133-135, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34404296

ABSTRACT

Influenza A virus (IAV) active surveillance in pigs prior to weaning is commonly conducted by collecting individual samples, mostly nasal swabs. Recently, the use of udder skin wipes collected from lactating sows was identified as an effective sampling method to indicate IAV status of suckling piglets prior to weaning. However, there is limited information on the effect of pooling multiple udder wipes on the ability to detect IAV. We evaluated the effect of pooling 3, 5, or 10 udder wipes on the sensitivity of detecting IAV and compared the results with testing the wipes individually. The likelihood of detecting positive udder wipes decreased with pooling when the initial positive cycle threshold value was ≥31.5; pooling of up to 3 samples could be performed without affecting sensitivity significantly. Our results support pooling of udder skin wipes to conduct surveillance of IAV in pigs prior to weaning.


Subject(s)
Influenza A virus , Mammary Glands, Animal , Animals , Female , Lactation , Swine
11.
Microbiol Resour Announc ; 10(33): e0026021, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34410155

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) continues to mutate, causing disruptive PRRS outbreaks in farms that lead to reproductive failure and respiratory disease-associated mortality. We present four new PRRSV type 2 variants in the United States belonging to four distinct orf5 sublineages within lineage 1.

12.
Indoor Air ; 31(6): 2058-2069, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33960547

ABSTRACT

Recirculating air purification technologies are employed as potential means of reducing exposure to aerosol particles and airborne viruses. Toward improved testing of recirculating air purification units, we developed and applied a medium-scale single-pass wind tunnel test to examine the size-dependent collection of particles and the collection and inactivation of viable bovine coronavirus (BCoV, a betacoronavirus), porcine respiratory coronavirus (PRCV, an alphacoronavirus), and influenza A virus (IAV), by a commercial air purification unit. The tested unit, the Molekule Air Mini, incorporates a MERV 16 filter as well as a photoelectrochemical oxidating layer. It was found to have a collection efficiency above 95.8% for all tested particle diameters and flow rates, with collection efficiencies above 99% for supermicrometer particles with the minimum collection efficiency for particles smaller than 100 nm. For all three tested viruses, the physical tracer-based log reduction was near 2.0 (99% removal). Conversely, the viable virus log reductions were found to be near 4.0 for IAV, 3.0 for BCoV, and 2.5 for PRCV, suggesting additional inactivation in a virus family- and genus-specific manner. In total, this work describes a suite of test methods which can be used to rigorously evaluate the efficacy of recirculating air purification technologies.


Subject(s)
Air Filters , Air Pollution, Indoor , Coronavirus , Orthomyxoviridae/isolation & purification , Aerosols , Air Microbiology , Air Pollution, Indoor/analysis , Coronavirus/isolation & purification , Filtration/instrumentation , Oxidative Stress , Particle Size
13.
PLoS One ; 16(2): e0246690, 2021.
Article in English | MEDLINE | ID: mdl-33571263

ABSTRACT

Influenza A virus (IAV) is one of the most important respiratory viruses affecting pig health and vaccination is the most common strategy to control influenza infections. In this field study we assessed the onset and duration of shedding of a live attenuated influenza virus (LAIV) vaccine, its ability to transmit to non-vaccinated pigs and whether the LAIV could be aerosolized and detected in the environment. Thirty-three litters (n = 33) of a farm using the LAIV vaccine were selected for the study, a subset of them (n = 12) were left unvaccinated and a subset of piglets (n = 3) in vaccinated litters were also left unvaccinated to serve as sentinels. Selected piglets from the litters were sampled multiple days post vaccination (DPV) by collecting nasal swabs and blood, and were tested using a LAIV vaccine specific RT-PCR assay and hemagglutination inhibition assay against the LAIV strains respectively. Environmental specimens consisting of air and surface wipes were also collected. One hundred percent (21/21) of the vaccinated litters tested LAIV positive 1 DPV and until 6 DPV. In contrast, only five (5/33) of the thirty-three non-vaccinated pigs tested positive during the course of the study. Viable LAIV was confirmed in vaccinated pigs by cell culture and whole genome sequencing. In addition, low levels of LAIV RNA (RT-PCR Ct values ranging between 33 and 38) were detected in all air specimens collected on the day of vaccination and until 6 DPV (3/10). Pigs had maternally derived antibodies reactive against the LAIV strains which may have influenced the degree of shedding observed. Under the conditions of this study, shedding of the LAIV from vaccinated pigs was limited in time, resulted in minimal transmission to non-vaccinated pigs and was detected in low levels in aerosols collected in the vaccinated rooms likely influenced by the presence of maternally derived antibodies against the LAIV strains.


Subject(s)
Antigens, Viral/analysis , Influenza A virus/physiology , Influenza Vaccines/administration & dosage , Orthomyxoviridae Infections/veterinary , Swine Diseases/virology , Aerosols , Animals , Hemagglutination Inhibition Tests , Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Swine , Swine Diseases/prevention & control , Vaccination , Virus Shedding
14.
PLoS One ; 16(1): e0244977, 2021.
Article in English | MEDLINE | ID: mdl-33507951

ABSTRACT

Researchers must be able to measure concentrations, sizes, and infectivity of virus-containing particles in animal agriculture facilities to know how far infectious virus-containing particles may travel through air, where they may deposit in the human or animal respiratory tract, and the most effective ways to limit exposures to them. The objective of this study was to evaluate a variety of impinger and cyclone aerosol or bioaerosol samplers to determine approaches most suitable for detecting and measuring concentrations of virus-containing particles in air. Six impinger/cyclone air samplers, a filter-based sampler, and a cascade impactor were used in separate tests to collect artificially generated aerosols of MS2 bacteriophage and swine and avian influenza viruses. Quantification of infectious MS2 coliphage was carried out using a double agar layer procedure. The influenza viruses were titrated in cell cultures to determine quantities of infectious virus. Viral RNA was extracted and used for quantitative real time RT-PCR, to provide total virus concentrations for all three viruses. The amounts of virus recovered and the measured airborne virus concentrations were calculated and compared among the samplers. Not surprisingly, high flow rate samplers generally collected greater quantities of virus than low flow samplers. However, low flow rate samplers generally measured higher, and likely more accurate, airborne concentrations of Infectious virus and viral RNA than high flow samplers. To assess airborne viruses in the field, a two-sampler approach may work well. A suitable high flow sampler may provide low limits of detection to determine if any virus is present in the air. If virus is detected, a suitable lower flow sampler may measure airborne virus concentrations accurately.


Subject(s)
Aerosols/analysis , Air Microbiology , Environmental Monitoring/instrumentation , Orthomyxoviridae/isolation & purification , Agriculture , Animals , Particle Size , RNA, Viral
15.
Prev Vet Med ; 188: 105257, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33472145

ABSTRACT

Piglets prior to weaning play a central role in maintaining influenza infections in breeding herds and the use of nurse sows is a common practice to adopt piglets that fall behind and that otherwise would die. Transmission of influenza A virus (IAV) from nurse sows to adopted pigs has been reported experimentally, however, the importance of this route of transmission under field conditions has not yet been elucidated. A cohort study to assess the IAV status in nurse and control sows and their respective litters was carried out in three influenza positive breed-to-wean farms. A total of 94 control and 90 nurse sows were sampled by collecting udder skin wipes and oral swabs at enrollment (∼ 5-7 days after farrowing) and at weaning. Six piglets per litter were sampled randomly at enrollment, 2 days post-enrollment (DPE), 4 DPE, at day 14 of lactation (14DL) and at weaning. At enrollment, 76 % (69/91) of udder wipes and 3 % (3/89) of oral swabs from nurse sows were positive by rRT-PCR compared with 23 % (21/92) of udder wipes and 0 % (0/85) of oral swabs from control sows. Of the 94 control litters sampled, 11.7 %, 14.9 %, 22.9 %, 46.8 % and 63.9 % tested rRT-PCR IAV positive at enrollment, 2DPE, 4DPE, 14 DL and weaning, respectively. Corresponding prevalence for nurse sow litters were 12.2 %, 30.2 %, 37.0 %, 59.4 % and 56.4 %. The odds of IAV positivity were significantly higher (p < 0.05) for litters from nurse sows 2 DPE (odd ratio (OR) = 6.13, 95 % CI = 1.8-21.2), 4 DPE (OR = 5.5, 95 % CI = 1.7-17.8) and 14 DL (OR = 3.7, 95 % CI = 1.1-12.3). However, there were no differences in the proportion of positive samples at weaning. Moreover, approximately 18 % of the control sows and 11 % of nurse sows that tested IAV negative in oral swabs at enrollment, tested IAV positive at weaning. This study indicates that nurse sows can contribute to the transmission and perpetuation of IAV infections in pigs prior to weaning, particularly during the first week after adoption.


Subject(s)
Animal Husbandry/methods , Influenza A virus/physiology , Orthomyxoviridae Infections/veterinary , Swine Diseases/transmission , Animals , Cohort Studies , Female , Iowa , Minnesota , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Sus scrofa , Swine , Swine Diseases/virology
16.
Transbound Emerg Dis ; 68(1): 183-193, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32652870

ABSTRACT

Although vaccination is the main measure to control influenza A virus (IAV) in swine, there is limited information on the efficacy of sow vaccination on reducing IAV infections in pigs at weaning. We assessed the effect of sow vaccination on IAV infection in pigs at weaning in a cohort of 52 breeding herds studied prospectively. Herds were voluntarily enrolled according to their IAV history, sow vaccination protocol and monitored during six months (prospective longitudinal study). On each herd, nasal swabs were collected monthly from 30 pigs at weaning and tested for IAV by RT-PCR. IAV was detected in 25% (75/305) of sampling events. Of 9,150 nasal swab pools (3 individual nasal swabs/pool), 15% (458/3050) of pools tested IAV positive. IAV infections in pigs at weaning were lower in vaccinated herds compared to non-vaccinated ones. Moreover, no significant differences were seen between prefarrow and whole herd protocols, or the use of commercial versus autogenous IAV vaccines. Prefarrow and whole herd vaccination protocols reduced the odds of groups testing IAV positive at weaning in comparison with no vaccination. Our results are relevant when considering implementation of sow vaccination to control influenza infections in pigs at weaning and, hence, minimize transmission to growing pigs and other farms.


Subject(s)
Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Orthomyxoviridae Infections/veterinary , Swine Diseases/prevention & control , Vaccination/veterinary , Weaning , Animals , Female , Longitudinal Studies , Orthomyxoviridae Infections/prevention & control , Prospective Studies , Sus scrofa/immunology , Sus scrofa/physiology , Swine
17.
Transbound Emerg Dis ; 68(1): 62-75, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32187882

ABSTRACT

Suckling piglets play an important role at maintaining influenza A virus (IAV) infections in breeding herds and disseminating them to other farms at weaning. However, the role they play at weaning to support and promote genetic variability of IAV is not fully understood. The objective here was to evaluate the genetic diversity of IAV in pigs at weaning in farms located in the Midwestern USA. Nasal swabs (n = 9,090) collected from piglets in breed-to-wean farms (n = 52) over a six-month period across seasons were evaluated for the presence of IAV. Nasal swabs (n = 391) from 23 IAV-positive farms were whole-genome sequenced. Multiple lineages of HA (n = 7) and NA (n = 3) were identified in 96% (22/23) and 61% (237/391) of the investigated farms and individual piglets, respectively. Co-circulation of multiple types of functional HA and NA was identified in most (83%) farms. Whole IAV genomes were completed for 126 individual piglet samples and 25 distinct and 23 mixed genotypes were identified, highlighting significant genetic variability of IAV in piglets. Co-circulation of IAV in the farms and co-infection of individual piglets at weaning was observed at multiple time points over the investigation period and appears to be common in the investigated farms. Statistically significant genetic variability was estimated within and between farms by AMOVA, and varying levels of diversity between farms were detected using the Shannon-Weiner Index. Results reported here demonstrate previously unreported levels of molecular complexity and genetic variability among IAV at the farm and piglet levels at weaning. Movement of such piglets infected at weaning may result in emergence of new strains and maintenance of endemic IAV infection in the US swine herds. Results presented here highlight the need for developing and implementing novel, effective strategies to prevent or control the introduction and transmission of IAV within and between farms in the country.


Subject(s)
Genotype , Influenza A virus/genetics , Orthomyxoviridae Infections/veterinary , Sus scrofa/physiology , Swine Diseases/virology , Weaning , Animals , Female , Male , Midwestern United States , Orthomyxoviridae Infections/virology , Swine
18.
Environ Sci Technol ; 55(7): 4174-4182, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33263988

ABSTRACT

Control technologies to inactivate airborne viruses effectively are needed during the ongoing SARS-CoV-2 pandemic, and to guard against airborne transmitted diseases. We demonstrate that sealed UV-C flow reactors operating with fluences near 253 ± 1 nm of 13.9-49.6 mJ cm-2 efficiently inactivate coronaviruses in an aerosol. For measurements, porcine respiratory coronavirus (PRCV) was nebulized in a custom-built, 3.86 m wind tunnel housed in a biosafety level class II facility. The single pass log10 reduction of active coronavirus was in excess of 2.2 at a flow rate of 2439 L min-1 (13.9 mJ cm-2) and in excess of 3.7 (99.98% removal efficiency) at 684 L min-1 (49.6 mJ cm-2). Because virus titers resulting from sampling downstream of the UV-C reactor were below the limit of detection, the true log reduction is likely even higher than measured. Comparison of virus titration results to reverse transcriptase quantitative PCR and measurement of fluorescein concentrations (doped into the nebulized aerosol) reveals that the reduction in viable PRCV is primarily due to UV-C based inactivation, as opposed to physical collection of virus. The results confirm that UV-C flow reactors can efficiently inactivate coronaviruses through incorporation into HVAC ducts or recirculating air purifiers.


Subject(s)
COVID-19 , Coronavirus , Aerosols , Humans , SARS-CoV-2 , Ultraviolet Rays
19.
Prev Vet Med ; 186: 105211, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33310196

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is currently the most detrimental disease in the U.S swine industry. Clinical signs of PRRS virus (PRRSv) infection in breeding herds include reproductive failure with abortions, stillbirths, premature farrowings and increased pre-weaning mortality. Serum from due-to-wean piglets is considered the most suitable specimen to monitor PRRSv infection and stability in breeding herds. However, processing fluids (PF - the serosanguinous exudate resultant of the collection of tails and testicles during processing) are a new specimen proposed to monitor piglets at processing (3-5 days of age) and udder wipes (UW) of lactating sows is yet another specimen to monitor infection status of suckling piglets indirectly. Here, we assessed which specimen type (e.g. sera, testicles, tails or UW) should be used to accurately establish the PRRSv status of a litter. Twenty-four litters were conveniently selected on a farm at 10 weeks post PRRSv outbreak. Blood samples, tails and testicles from every piglet in a litter, and an udder skin wipe from the sow were collected at processing (3-5 days). Individual litter testicles and tails as well as the udder wipe were placed each in a reclosable bag to prevent cross-contamination. Sensitivity (Se), specificity (Sp), negative predictive value (NPV), positive predictive value (PPV) and global agreement at the litter level were calculated using the sera results of the litter as the gold standard. The optimum cycle threshold (Ct) value to classify a sample as negative was ≥35 for serum and ≥36 for the aggregated samples (testicles, tails, and UW) based on the ROC curve analysis. Using those thresholds, the fluid collected from the testicles showed the best overall performance (Se = 92 % [62-100]; Sp = 82 % [48-98], NPV = 90 % [55-100], PPV = 85 % [55-98], global agreement = 87 %) compared to tail fluid and UW. Sensitivity of the tail fluid was 62 % (32-86) and the UW was 23 % (5-54), both of which yielded a 100 % specificity and PPV. This study provides information on the contribution of each of the tissues collected at processing on the detection of PRRSv, which becomes relevant in countries were castration and/or tail docking is banned.


Subject(s)
Mammary Glands, Animal/virology , Porcine Reproductive and Respiratory Syndrome/diagnosis , Porcine respiratory and reproductive syndrome virus/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Tail/virology , Testis/virology , Animals , Female , Male , Sus scrofa , Swine
20.
Vet Res ; 51(1): 89, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32646490

ABSTRACT

Influenza A viruses evolve rapidly to escape host immunity. In swine, this viral evolution has resulted in the emergence of multiple H1 and H3 influenza A virus (IAV) lineages in the United States (US) pig populations. The heterologous prime-boost vaccination strategy is a promising way to deal with diverse IAV infection in multiple animal models. However, whether or not this vaccination strategy is applicable to US swine to impart immunity against infection from North American strains of IAV is still unknown. We performed a vaccination-challenge study to evaluate the protective efficacy of using multivalent inactivated vaccine and/or a live attenuated IAV vaccine (LAIV) in pigs following multiple prime-boost vaccination protocols against a simultaneous H1N1 and H3N2 IAV infection. Our data show that pigs in the heterologous prime-boost vaccination group had more favorable outcomes consistent with a better response against virus challenge than non-vaccinated pigs. Additionally, delivering a multivalent heterologous inactivated vaccine boost to pigs following a single LAIV administration was also beneficial. We concluded the heterologous prime boost vaccination strategy may potentiate responses to suboptimal immunogens and holds the potential applicability to control IAV in the North American swine industry. However, more studies are needed to validate the application of this vaccination approach under field conditions.


Subject(s)
Communicable Disease Control/methods , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/veterinary , Swine Diseases/prevention & control , Vaccination/veterinary , Animals , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Sus scrofa , Swine , Swine Diseases/virology , Vaccines, Attenuated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...