Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
bioRxiv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38915568

ABSTRACT

Progress in histological methods and in microscope technology has enabled dense staining and imaging of axons over large brain volumes, but tracing axons over such volumes requires new computational tools for 3D reconstruction of data acquired from serial sections. We have developed a computational pipeline for automated tracing and volume assembly of densely stained axons imaged over serial sections, which leverages machine learning-based segmentation to enable stitching and alignment with the axon traces themselves. We validated this segmentation-driven approach to volume assembly and alignment of individual axons over centimeter-scale serial sections and show the application of the output traces for analysis of local orientation and for proofreading over aligned volumes. The pipeline is scalable, and combined with recent advances in experimental approaches, should enable new studies of mesoscale connectivity and function over the whole human brain.

2.
Curr Biol ; 34(11): 2418-2433.e4, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38749425

ABSTRACT

A primary cilium is a membrane-bound extension from the cell surface that contains receptors for perceiving and transmitting signals that modulate cell state and activity. Primary cilia in the brain are less accessible than cilia on cultured cells or epithelial tissues because in the brain they protrude into a deep, dense network of glial and neuronal processes. Here, we investigated cilia frequency, internal structure, shape, and position in large, high-resolution transmission electron microscopy volumes of mouse primary visual cortex. Cilia extended from the cell bodies of nearly all excitatory and inhibitory neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) but were absent from oligodendrocytes and microglia. Ultrastructural comparisons revealed that the base of the cilium and the microtubule organization differed between neurons and glia. Investigating cilia-proximal features revealed that many cilia were directly adjacent to synapses, suggesting that cilia are poised to encounter locally released signaling molecules. Our analysis indicated that synapse proximity is likely due to random encounters in the neuropil, with no evidence that cilia modulate synapse activity as would be expected in tetrapartite synapses. The observed cell class differences in proximity to synapses were largely due to differences in external cilia length. Many key structural features that differed between neuronal and glial cilia influenced both cilium placement and shape and, thus, exposure to processes and synapses outside the cilium. Together, the ultrastructure both within and around neuronal and glial cilia suggest differences in cilia formation and function across cell types in the brain.


Subject(s)
Cilia , Animals , Cilia/ultrastructure , Mice , Microscopy, Electron, Transmission , Mice, Inbred C57BL , Neurons/ultrastructure , Neurons/physiology , Visual Cortex/ultrastructure , Visual Cortex/physiology , Neuroglia/ultrastructure , Neuroglia/physiology , Female , Synapses/ultrastructure , Synapses/physiology , Male
SELECTION OF CITATIONS
SEARCH DETAIL