Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Antioxidants (Basel) ; 13(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38539855

ABSTRACT

Cryopreservation is a stressful process for sperm, as it is associated with an increased production of reactive oxygen species (ROS). Elevated ROS levels, which create an imbalance with antioxidant capacity, may result in membrane lipid peroxidation (LPO), protein damage and DNA fragmentation. This study aimed to determine whether the membrane LPO and DNA fragmentation of frozen-thawed horse sperm relies upon antioxidant activity, including enzymes (superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and paraoxonase type 1 (PON1)); non-enzymatic antioxidant capacity (Trolox-equivalent antioxidant capacity (TEAC), plasma ferric reducing antioxidant capacity (FRAP) and cupric reducing antioxidant capacity (CUPRAC)); and the oxidative stress index (OSI) of their seminal plasma (SP). Based on total motility and plasma membrane integrity (SYBR14+/PI-) after thawing, ejaculates were hierarchically (p < 0.001) clustered into two groups of good- (GFEs) and poor-(PFEs) freezability ejaculates. LPO and DNA fragmentation (global DNA breaks) were higher (p < 0.05) in the PFE group than in the GFE group, with LPO and DNA fragmentation (global DNA breaks) after thawing showing a positive relationship (p < 0.05) with SP OSI levels and ROS production. In addition, sperm motility and membrane integrity after thawing were negatively (p < 0.05) correlated with the activity levels of SP antioxidants (PON1 and TEAC). The present results indicate that LPO and DNA fragmentation in frozen-thawed horse sperm vary between ejaculates. These differences could result from variations in the activity of antioxidants (PON1 and TEAC) and the balance between the oxidant and antioxidant components present in the SP.

2.
Biol Res ; 57(1): 5, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38287386

ABSTRACT

BACKGROUND: Basal energetic metabolism in sperm, particularly oxidative phosphorylation, is known to condition not only their oocyte fertilising ability, but also the subsequent embryo development. While the molecular pathways underlying these events still need to be elucidated, reactive oxygen species (ROS) could have a relevant role. We, therefore, aimed to describe the mechanisms through which mitochondrial activity can influence the first stages of embryo development. RESULTS: We first show that embryo development is tightly influenced by both intracellular ROS and mitochondrial activity. In addition, we depict that the inhibition of mitochondrial activity dramatically decreases intracellular ROS levels. Finally, we also demonstrate that the inhibition of mitochondrial respiration positively influences sperm DNA integrity, most likely because of the depletion of intracellular ROS formation. CONCLUSION: Collectively, the data presented in this work reveals that impairment of early embryo development may result from the accumulation of sperm DNA damage caused by mitochondrial-derived ROS.


Subject(s)
Mitochondria , Semen , Male , Humans , Reactive Oxygen Species/metabolism , Semen/metabolism , Spermatozoa/metabolism , Embryonic Development , Oxidative Stress
3.
Biol. Res ; 57: 5-5, 2024. ilus, graf
Article in English | LILACS | ID: biblio-1550060

ABSTRACT

BACKGROUND: Basal energetic metabolism in sperm, particularly oxidative phosphorylation, is known to condition not only their oocyte fertilising ability, but also the subsequent embryo development. While the molecular pathways underlying these events still need to be elucidated, reactive oxygen species (ROS) could have a relevant role. We, therefore, aimed to describe the mechanisms through which mitochondrial activity can influence the first stages of embryo development. RESULTS: We first show that embryo development is tightly influenced by both intracellular ROS and mitochondrial activity. In addition, we depict that the inhibition of mitochondrial activity dramatically decreases intracellular ROS levels. Finally, we also demonstrate that the inhibition of mitochondrial respiration positively influences sperm DNA integrity, most likely because of the depletion of intracellular ROS formation. CONCLUSION: Collectively, the data presented in this work reveals that impairment of early embryo development may result from the accumulation of sperm DNA damage caused by mitochondrial-derived ROS.


Subject(s)
Humans , Male , Semen/metabolism , Mitochondria , Spermatozoa/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Embryonic Development
SELECTION OF CITATIONS
SEARCH DETAIL
...