Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters











Publication year range
1.
MethodsX ; 13: 102920, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39252999

ABSTRACT

Antibiotics are currently recognized as environmental pollutants. In this work, the methods involved in the degradation of a ß-lactam antibiotic (i.e., DXC) by treatments based on inorganic peroxides and UVC (e.g., UVC alone, UV-C/H2O2, UVC/peroxymonosulfate, and UVC/peroxydisulfate) are presented. The methodology of computational calculations to obtain frontier orbitals and Fukui indices for DXC, and elucidate the reactive moieties on the target substance is also shown. Finally, the direct oxidation by peroxides and UV-C/H2O2 action to treat DXC in simulated pharmaceutical wastewater are depicted. The chromatographic and theoretical analyses allowed for determining the degrading performance of inorganic peroxides and UVC-based treatments toward the target pollutant in aqueous samples.•Treatments based on inorganic peroxides and UVC as useful methods for degrading the ß-lactam antibiotic dicloxacillin.•Persulfates and UV-C/H2O2 showed high degrading action on the target pharmaceutical.•Methodologies based on theoretical calculations for the identification of reactive moieties on the DXC susceptible to radical attacks are presented.

2.
J Environ Manage ; 368: 122162, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39128352

ABSTRACT

Husks of rice (RH), coffee (CH), and cholupa (CLH) were used to produce natural adsorbents. The natural adsorbents were used to remove pharmaceuticals such as diclofenac, ciprofloxacin, and acetaminophen in a mixture of distilled water. However, CH stood out for its efficiency in removing ciprofloxacin (74%) due to the higher concentration of acidic groups, as indicated by the Boehm method. In addition, CH removed 86% of ciprofloxacin individually. Therefore, CH was selected and used to remove other fluoroquinolones, such as levofloxacin and Norfloxacin. Although electrostatic interactions favored removals, better removal was observed for ciprofloxacin due to its smaller molecular volume. Then, ciprofloxacin was selected, and the effect of pH, matrix, and adsorbent doses were evaluated. In this way, using a pH of 6.2 in urine with a dose of 1.5 g L-1, it is possible to adsorb CIP concentrations in the range (0.0050-0.42 mmol L-1). Subsequently, the high R2 values and low percentages of APE and Δq indicated better fits for pseudo-second-order kinetics, suggesting a two-stage adsorption. At the same time, the Langmuir isotherm recommends a monolayer adsorption with a Qm of 25.2 mg g-1. In addition, a cost of 0.373 USD/g CIP was estimated for the process, where the material can be reused up to 4 times with a CIP removal in the urine of 51%. Consequently, thermodynamics analysis showed an exothermic and spontaneous process with high disorder. Furthermore, changes in FTIR analysis after adsorption suggest that CH in removing CIP in urine involves electrostatic attractions, hydrogen bonds and π-π interactions. In addition, the life cycle analysis presents, for the 11 categories evaluated, a lower environmental impact of the CIP removal in urine with CH than for the preparation of adsorbent, confirming that the adsorption process is more environmentally friendly than materials synthesis or other alternatives of treatments. Furthermore, future directions of the study based on real applications were proposed.


Subject(s)
Water Pollutants, Chemical , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Ciprofloxacin/chemistry , Ciprofloxacin/urine , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/urine
3.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999926

ABSTRACT

Advanced Oxidation Processes (AOPs) offer promising methods for disinfection by generating radical species like hydroxyl radicals, superoxide anion radicals, and hydroxy peroxyl, which can induce oxidative stress and deactivate bacterial cells. Photocatalysis, a subset of AOPs, activates a semiconductor using specific electromagnetic wavelengths. A novel material, Cu/Cu2O/CuO nanoparticles (NPs), was synthesized via a laser ablation protocol (using a 1064 nm wavelength laser with water as a solvent, with energy ranges of 25, 50, and 80 mJ for 10 min). The target was sintered from 100 °C to 800 °C at rates of 1.6, 1.1, and 1 °C/min. The composite phases of Cu, CuO, and Cu2O showed enhanced photocatalytic activity under visible-light excitation at 368 nm. The size of Cu/Cu2O/CuO NPs facilitates penetration into microorganisms, thereby improving the disinfection effect. This study contributes to synthesizing mixed copper oxides and exploring their activation as photocatalysts for cleaner surfaces. The electronic and electrochemical properties have potential applications in other fields, such as capacitor materials. The laser ablation method allowed for modification of the band gap absorption and enhancement of the catalytic properties in Cu/Cu2O/CuO NPs compared to precursors. The disinfection of E. coli with Cu/Cu2O/CuO systems serves as a case study demonstrating the methodology's versatility for various applications, including disinfection against different microorganisms, both Gram-positive and Gram-negative.


Subject(s)
Copper , Escherichia coli , Copper/chemistry , Escherichia coli/drug effects , Catalysis , Metal Nanoparticles/chemistry , Lasers , Oxidation-Reduction , Disinfection/methods , Light
4.
J Environ Manage ; 366: 121930, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39053376

ABSTRACT

The sonochemical system is highly effective at degrading hydrophobic substances but has limitations when it comes to eliminating hydrophilic compounds. This study examines the impact of organic and inorganic additives on improving the sonochemical degradation of hydrophilic pollutants in water. The effects of adding an organic substance (CCl4) and two inorganic ions (Fe2+ and HCO3-) were tested. The treatment was focused on a representative hydrophilic antibiotic, cefadroxil (CDX). Initially, the sonodegradation of CDX without additives was assessed and compared with two reference pollutants more hydrophobic than CDX: dicloxacillin (DCX) and methyl orange (MO). The results highlighted the limitations of ultrasound alone in degrading CDX. Subsequently, the impact of the additives on enhancing the removal of this recalcitrant pollutant was evaluated at two frequencies (375 and 990 kHz). A significant improvement in the CDX degradation was observed with the presence of CCl4 and Fe2+ at both frequencies. Increasing CCl4 concentration led to greater CDX elimination, whereas a high Fe2+ concentration had detrimental effects. To identify the reactive sites on CDX towards the species generated with the additives, theoretical calculations (i.e. Fukui indices and HOMO-LUMO gaps) were performed. These analyses indicated that the ß-lactam and dihydrothiazine rings on CDX are highly reactive towards oxidizing species. This research enhances our understanding of the relationship between the structural characteristics of contaminants and the sonochemical frequency in the action of additives having diverse nature.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry
5.
J Environ Manage ; 350: 119548, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38007926

ABSTRACT

The ability of the ultrasound (US) combined with peroxymonosulfate (PMS), and a carbonaceous material (BC) was evaluated in the degradation of a model pollutant (acetaminophen, ACE). The US/BC/PMS system was compared with other possible systems (US, oxidation by PMS, BC adsorption, BC/PMS, US/PMS, and US/BC. The effect of the ultrasonic frequency (40, 375, and 1135 kHz) on the kinetics and synergy of the ACE removal was evaluated. In the US system, kinetics was favored at 375 kHz due to the increased production of hydroxyl radicals (HO•), but this did not improve in the US/PMS and US/BC systems. However, synergistic and antagonistic effects were observed at the low and high frequencies where the production of radicals is less efficient but there is an activation of PMS through mechanical effects. US/BC/PMS at 40 kHz was the most efficient system obtaining ∼95% ACE removal (40 µM) in the first 10 min of treatment, and high synergy (S = 10.30). This was promoted by disaggregation of the carbonaceous material, increasing the availability of catalytic sites where PMS is activated. The coexistence of free-radical and non-radical pathways was analyzed. Singlet oxygen (1O2) played the dominant role in degradation, while HO• and sulfate radicals (SO4•-), scarcely generated at low frequency, play a minimum role. Performance in hospital wastewater (HWW), urine, and seawater (SW) evidenced the competition of organic matter by BC active sites and reactive species and the removal enhancement when Cl- is present. Besides, toxicity decreased by ∼20% after treatment, being the system effective after three cycles of reuse.


Subject(s)
Ultrasonics , Water , Peroxides/chemistry , Oxidation-Reduction
6.
Environ Sci Pollut Res Int ; 30(59): 123616-123632, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37991611

ABSTRACT

Pristine pyrogenic carbonaceous material (BRH) obtained from rice husk and modified with FeCl3 (BRH-FeCl3) were prepared and explored as carbocatalysts for the activation of peroxymonosulfate (PMS) to degrade a model pharmaceutical (acetaminophen, ACE) in water. The BRH-FeCl3/PMS system removed the pharmaceutical faster than the BRH/PMS. This is explained because in BRH-FeCl3, compared to BRH, the modification (iron played a role as a structuring agent mainly) increased the average pore diameter and the presence of functional groups such as -COO-, -Si-O-, or oxygen vacancies, which allowed to remove the pollutant through an adsorption process and significant carbocatalytic degradation. BRH-FeCl3 was reusable during four cycles and had a higher efficiency for activating PMS than another inorganic peroxide (peroxydisulfate, PDS). The effects of BRH-FeCl3 and PMS concentrations were evaluated and optimized through an experimental design, maximizing the ACE degradation. In the optimized system, a non-radical pathway (i.e., the action of singlet oxygen, from the interaction of PMS with defects and/or -COO-/-Si-O- moieties on the BRH-FeCl3) was found. The BRH-FeCl3/PMS system generated only one primary degradation product that was more susceptible to biodegradation and less active against living organisms than ACE. Also, the BRH-FeCl3/PMS system induced partial removals of chemical oxygen demand and dissolved organic carbon. Furthermore, the carbocatalytic system eliminated ACE in a wide pH range and in simulated urine, having a low-moderate electric energy consumption, indicating the feasibility of the carbocatalytic process to treat water polluted with pharmaceuticals.


Subject(s)
Oryza , Water , Peroxides/chemistry , Pharmaceutical Preparations
7.
Biomimetics (Basel) ; 8(5)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37754174

ABSTRACT

This study focuses on developing and evaluating two novel enantioselective biomimetic models for the active centers of oxidases (ascorbate oxidase and catalase). These models aim to serve as alternatives to enzymes, which often have limited action and a delicate nature. For the ascorbate oxidase (AO) model (compound 1), two enantiomers, S,S(+)cpse and R,R(-)cpse, were combined in a crystalline structure, resulting in a racemic compound. The analysis of their magnetic properties and electrochemical behavior revealed electronic transfer between six metal centers. Compound 1 effectively catalyzed the oxidation of ascorbic to dehydroascorbic acid, showing a 45.5% yield for the racemic form. This was notably higher than the enantiopure compounds synthesized previously and tested in the current report, which exhibited yields of 32% and 28% for the S,S(+)cpse and R,R(-)cpse enantiomers, respectively. This outcome highlights the influence of electronic interactions between metal ions in the racemic compound compared to pure enantiomers. On the other hand, for the catalase model (compound 2), both the compound and its enantiomer displayed polymeric properties and dimeric behavior in the solid and solution states, respectively. Compound 2 proved to be effective in catalyzing the oxidation of hydrogen peroxide to oxygen with a yield of 64.7%. In contrast, its enantiomer (with R,R(-)cpse) achieved only a 27% yield. This further validates the functional nature of the prepared biomimetic models for oxidases. This research underscores the importance of understanding and designing biomimetic models of metalloenzyme active centers for both biological and industrial applications. These models show promising potential as viable alternatives to natural enzymes in various processes.

8.
Article in English | MEDLINE | ID: mdl-37632616

ABSTRACT

The enhancement of the ultrasound system by adding diverse oxidants to remove a model contaminant (acetaminophen, ACE) in water was investigated. Different parameters were evaluated to study their effect on both the degradation kinetics and the synergy of the combination. The variables studied were the ultrasonic frequency (575, 858, and 1135 kHz), type of oxidant (hydrogen peroxide, sodium peroxydisulfate (or persulfate, PDS), and potassium peroxymonosulfate (PMS)), ACE concentration (4, 8, and 40 µM), and oxidant concentration (0.01, 0.1, 1, and 5 mM). Particular interest was placed on synergistic effects, implying that one process (or both) is activated by the other to lead to greater efficiency. Interestingly, the parameters that led to the higher synergistic effects did not always lead to the most favorable degradation kinetics. An increase in ACE removal of 20% was obtained using the highest frequency studied (1135 kHz), PMS 0.1 mM, and the highest concentration of ACE (40 µM). The intensification of degradation was mainly due to the ability of ultrasound to activate oxidants and produce extra hydroxyl radicals (HO•) or sulfate radicals (SO4•-). Under these conditions, treatment of ACE spiked into seawater, hospital wastewater, and urine was performed. The hospital wastewater matrix inhibited ACE degradation slightly, while the urine components inhibited the pollutant degradation completely. The inhibition was mainly attributed to the competing organic matter in the effluents for the sono-generated radical species. On the contrary, the removal of ACE in seawater was significantly intensified due to "salting out" effects and the production of the strong oxidant HOCl from the reaction of chloride ions with PMS.

9.
Chemosphere ; 337: 139375, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37391080

ABSTRACT

The presence of pharmaceutical active products (PhACs) in the aquatic environment is a matter of current concern, and there is an increasing trend to include these compounds in water quality monitoring programs and environmental risk assessments. Several studies have reported the presence of PhACs in environmental waters worldwide, but only a few studies have focused on Latin American countries. Thus, available information on the occurrence of parent pharmaceuticals, especially their metabolites, is very scarce. Peru is one of the less monitored countries in terms of contaminants of emerging concern (CECs) in waters, and only one study has been found, which was focused on the quantification of selected PhACs in urban wastewater and surface water. The aim of this work is to complement the previous data reported on PhACs in the aquatic environment by application of a wide-scope high-resolution (HRMS)-based screening, making use of target and suspect approaches. In the present work, 30 pharmaceuticals, drugs or other compounds (sweeteners, UV filters, etc.) and 21 metabolites have been identified, with antibiotics (and metabolites) being the most prevalent compounds. The use of liquid chromatography (LC) coupled to ion mobility-HRMS allowed the tentative identification of parent compounds and metabolites, for which the analytical reference standard was not available, with a high level of confidence in their identification. Based on the results obtained, a strategy for the monitoring of PhACs and relevant metabolites in environmental waters from Peru and for subsequent risk assessment is proposed. Our data will also help to focus future studies to evaluate the removal efficiency of wastewater treatment plants and the impact of treated water in receiving water bodies.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Peru , Risk Assessment , Pharmaceutical Preparations
10.
Molecules ; 28(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37299012

ABSTRACT

A chromate of copper and cobalt (Φy) was synthesized and characterized. Φy activated peroxymonosulfate (PMS) to degrade ciprofloxacin (CIP) in water. The Φy/PMS combination showed a high degrading capability toward CIP (~100% elimination in 15 min). However, Φy leached cobalt (1.6 mg L-1), limiting its use for water treatment. To avoid leaching, Φy was calcinated, forming a mixed metal oxide (MMO). In the combination of MMO/PMS, no metals leached, the CIP adsorption was low (<20%), and the action of SO4•- dominated, leading to a synergistic effect on pollutant elimination (>95% after 15 min of treatment). MMO/PMS promoted the opening and oxidation of the piperazyl ring, plus the hydroxylation of the quinolone moiety on CIP, which potentially decreased the biological activity. After three reuse cycles, the MMO still presented with a high activation of PMS toward CIP degradation (90% in 15 min of action). Additionally, the CIP degradation by the MMO/PMS system in simulated hospital wastewater was close to that obtained in distilled water. This work provides relevant information on the stability of Co-, Cu-, and Cr-based materials under interaction with PMS and the strategies to obtain a proper catalyst to degrade CIP.


Subject(s)
Water Pollutants, Chemical , Water Purification , Anti-Bacterial Agents/pharmacology , Copper , Water Pollutants, Chemical/analysis , Peroxides , Oxides , Ciprofloxacin/pharmacology , Cobalt
11.
MethodsX ; 10: 102128, 2023.
Article in English | MEDLINE | ID: mdl-36974326

ABSTRACT

A primary pollution source by pharmaceuticals is hospital wastewater (HWW). Herein, the methods involved in the action of a biological system (BS, aerobic activated sludge) or a sonochemical treatment (US, 375 kHz and 30.8 W), for degrading four relevant pharmaceuticals (azithromycin, ciprofloxacin, paracetamol, and valsartan) in HWW, are shown. Before treatment of HWW, the correct performance of BS was assessed using glucose as a reference substance, monitoring oxygen consumption, and organic carbon removal. Meanwhile, for US, a preliminary test using ciprofloxacin in distilled water was carried out. The determination of risk quotients (RQ) and theoretical analyses about reactive moieties on these target substances are also presented. For both, the degradation of the pharmaceuticals and the calculation of RQ, analyses were performed by LC-MS/MS. The BS action decreased the concentration of paracetamol and valsartan by ∼96 and 86%, respectively. However, a poor action on azithromycin (2% removal) was found, whereas ciprofloxacin concentration increased ∼20%; leading to an RQ value of 1.61 (high risk) for the pharmaceuticals mixture. The analyses using a biodegradation pathway predictor (EAWAG-BDD methodology) revealed that the amide group on paracetamol and alkyl moieties on valsartan could experience aerobic biotransformations. In turn, US action decreased the concentration of the four pharmaceuticals (removals > 60% for azithromycin, ciprofloxacin, and paracetamol), diminishing the environmental risk (RQ: 0.51 for the target pharmaceuticals mixture). Atomic charge analyses (based on the electronegativity equalization method) were performed, showing that the amino-sugar on azithromycin; piperazyl ring, and double bond close to the two carbonyls on ciprofloxacin, acetamide group on paracetamol, and the alkyl moieties bonded to the amide group of valsartan are the most susceptible moieties to attacks by sonogenerated radicals. The LC-MS/MS analytical methodology, RQ calculations, and theoretical analyses allowed for determining the degrading performance of BS and US toward the target pollutants in HWW.•Biological and sonochemical treatments as useful methods for degrading 4 representative pharmaceuticals are presented.•Sonochemical treatment had higher degrading action than the biological one on the target pharmaceuticals.•Methodologies for risk environmental calculation and identification of moieties on the pharmaceuticals susceptible to radical attacks are shown.

12.
MethodsX ; 10: 102068, 2023.
Article in English | MEDLINE | ID: mdl-36879762

ABSTRACT

Giardia intestinalis is a pollutant of food and water, resistant to conventional disinfection treatments and its elimination requires effective methods action. Herein, mid-high-frequency ultrasound (375 kHz), which produces HO• and H2O2, was used as an alternative method of treatment to inactivate Giardia intestinalis cysts in water. The effect of ultrasound power (4.0, 11.2, 24.4 W) on the sonogeneration of radicals was tested, showing that 24.4 W was the condition most favorable to treat the parasite. The viability of the protozoan cysts was evaluated using the immunofluorescence technique and vital stains, showing this protocol was useful to quantify the parasite. The sonochemical method (at 375 kHz and 24.4 W) was applied at different treatment times (10, 20, and 40 min). A significant decrease in the protozoan concentration (reduction of 52.4% of viable cysts) was observed after 20 min of treatment. However, the extension of treatment time up to 40 min did not increase the inactivation. Disinfecting action was associated with attacks on the Giardia intestinalis cyst by sonogenerated HO• and H2O2 (which may induce structural damage, even the cell lysis). For future work is recommended to test combinations with UVC or Fenton process to enhance the inactivating action of this method.•Mid-high-frequency ultrasound produces HO• and H2O2 profitable to inactivate Giardia intestinalis.•Immunofluorescence technique and vital stains allowed us to quantify the parasite viability.•Giardia intestinalis cysts concentration decreased by 52.4% after only 20 min of sonication.

13.
Molecules ; 28(3)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36770778

ABSTRACT

Mid-high-frequency ultrasound (200-1000 kHz) eliminates organic pollutants and also generates H2O2. To take advantage of H2O2, iron species can be added, generating a hybrid sono-Fenton process (sF). This paper presents the possibilities and limitations of sF. Heterogeneous (a natural mineral) and homogeneous (Fe2+ and Fe3+ ions) iron sources were considered. Acetaminophen, ciprofloxacin, and methyl orange were the target organic pollutants. Ultrasound alone induced the pollutants degradation, and the dual competing role of the natural mineral (0.02-0.20 g L-1) meant that it had no significant effects on the elimination of pollutants. In contrast, both Fe2+ and Fe3+ ions enhanced the pollutants' degradation, and the elimination using Fe2+ was better because of its higher reactivity toward H2O2. However, the enhancement decreased at high Fe2+ concentrations (e.g., 5 mg L-1) because of scavenger effects. The Fe2+ addition significantly accelerated the elimination of acetaminophen and methyl orange. For ciprofloxacin, at short treatment times, the degradation was enhanced, but the pollutant complexation with Fe3+ that came from the Fenton reaction caused degradation to stop. Additionally, sF did not decrease the antimicrobial activity associated with ciprofloxacin, whereas ultrasound alone did. Therefore, the chemical structure of the pollutant plays a crucial role in the feasibility of the sF process.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Acetaminophen , Oxidation-Reduction , Water Pollutants, Chemical/analysis , Iron/chemistry , Minerals , Ciprofloxacin
14.
Diagn Microbiol Infect Dis ; 105(1): 115819, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36242873

ABSTRACT

Hospital wastewater (HWW) discharges are among the main sources of antibiotic-resistant bacteria. This study detected a high frequency of beta-lactamase-producing Gram-negative Bacilli in HWW of different geographical regions of Colombia, even in the presence of the wastewater treatment plant, highlighting the importance of regulating these environments in developing countries.


Subject(s)
Gram-Negative Bacterial Infections , beta-Lactamases , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Wastewater , Drug Resistance, Bacterial , Gram-Negative Bacteria , Hospitals , Gram-Negative Bacterial Infections/microbiology , Microbial Sensitivity Tests
15.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36432347

ABSTRACT

Nanoparticles (NPs) of α-MnO2 have high applicability in photoelectrochemical, heterogeneous photocatalysis, optical switching, and disinfection processes. To widen this panorama about MnO2 NPs, the formation of this material by laser ablation and deposition by dip-coating on fluorine-doped tin oxide (FTO), were considered in this study. The optical, spectroscopic, electrochemical characterization, and the evaluation of the antimicrobial activity, plus the photocatalytic response, were measured herein in colloidal media and deposited. For the deposition of NPs on FTO sheet, an anode is produced with a pseudocapacitive behavior, and 2.82 eV of band gap (GAP) in comparison with colloidal NPs for a value of 3.84 eV. Both colloidal suspension and deposited NPs have intrinsic antibacterial activity against two representative microorganisms (E. coli and S. aureus), and this biological activity was significantly enhanced in the presence of UVA light, indicating photocatalytic activity of the material. Thus, both the colloidal suspension and deposited NPs can act as disinfecting agents themselves or via light activation. However, an antibacterial behavior different for E. coli and S. aureus was observed, in function of the aggregation state, obtaining total E. coli disinfection at 30 min for deposited samples on FTO.

16.
J Environ Manage ; 323: 116148, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36088761

ABSTRACT

Biochar (BP) obtained from palm fiber wastes was combined with H2O2, peroxymonosulfate (PMS), or persulfate (PDS) to treat valsartan, acetaminophen, and cephalexin in water. BP activated PMS and PDS but no H2O2. Computational calculations indicated that interactions of PMS and PDS with BP are more favored than those with HP. The highest synergistic effect was obtained for the removal of valsartan by BP + PMS. This carbocatalytic process was optimized, evaluating the effects of pH, BP dose, and peroxymonosulfate concentration, and minimizing the oxidant quantity to decrease costs and environmental impacts of the process. SO4•-, HO•, 1O2, and O2•- were the agents involved in the degradation of the pharmaceuticals. The reusability of BP was tested, showing that the carbocatalytic process removed ∼80% of target pollutants after 120 min of treatment even at the fourth reuse cycle. Also, the process decreased the phytotoxicity of the treated sample. Simulated hospital wastewater was treated and its components induced competing effects, but the system achieved the target pharmaceuticals removal in this matrix. Additionally, the analysis of environmental impact using a life cycle assessment unraveled that the carbocatalytic process had a carbon footprint of 2.87 Kg CO2-Eq, with the biochar preparation (which involves the use of ZnCl2 and electric energy consumption) as the main hotspot in the process.


Subject(s)
Oxidants , Water Pollutants, Chemical , Acetaminophen , Carbon Dioxide/analysis , Cephalexin/analysis , Charcoal , Peroxides , Pharmaceutical Preparations , Valsartan/analysis , Wastewater/analysis , Water/analysis , Water Pollutants, Chemical/analysis
17.
J Environ Manage ; 315: 115119, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35500483

ABSTRACT

A semiempirical approach considering the rate of reactive chlorine species-RCS- production (ΦE) as a function of current and Cl- concentration for the modeling of acetaminophen (ACE) degradation is presented. A filter-press reactor having a Ti/RuO2-ZrO2 (Sb2O3 doped) anode, NaCl (0.04-0.1 mol L-1) as supporting electrolyte, and operated in continuous mode, was considered. A current of 100 mA and a flow of 11 mL min-1 favored the electrogeneration of RCS and ACE degradation. Hydraulic retention time and ΦE were the most relevant parameters for the RCS production. These two parameters, plus the pollutant concentration, were very determinant for the ACE degradation. The model successfully reproduced the ACE removal in distilled water at different concentrations (10, 20, 40, and 60 mg L-1). The electrochemical system achieved removals between 80 and 100% of ACE in distilled water. The ACE treatment in actual seawater (a chloride-rich matrix, 0.539 mol L-1 of Cl-) was assessed, and the degradation was simulated using the developed model. The competing role toward electrogenerated RCS by intrinsic organic matter (3.2 mg L-1) in the seawater was a critical point, and the simulated values fitted well with the experimental data. Finally, the action of the electrochemical system on ciprofloxacin (CIP) in real seawater and its antimicrobial activity was tested. CIP removal (100% at 120 s) was faster than that observed for ACE (100% of degradation after 180 s) due to CIP has amine groups that are more reactive toward RCS than phenol moiety on ACE. Moreover, the system removed 100% of the antimicrobial activity associated with CIP, indicating a positive environmental effect of the treatment.


Subject(s)
Anti-Infective Agents , Water Pollutants, Chemical , Water Purification , Chlorides , Chlorine , Ciprofloxacin/pharmacology , Electrodes , Oxidation-Reduction , Pharmaceutical Preparations , Saline Waters , Water Pollutants, Chemical/analysis
19.
Environ Sci Pollut Res Int ; 29(28): 42146-42156, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34263397

ABSTRACT

Extracts of copoazu (Theobroma gramdiflorum), canangucha (Maurita Flexuosa), and coffee (Coffea arabica) were explored as enhancers of the solar photo-Fenton process to eliminate acetaminophen, sulfamethoxazole, carbamazepine, and diclofenac in raw municipal wastewater. The process, at pH 6.2 and 5 mg L-1 of iron without the presence of extracts, had a very limited action (~35% of the pollutants degradation at 90 min of treatment) due to the iron precipitation. Interestingly, the extract addition increased the soluble iron forms, but only copoazu extract improved the pollutant degradation (~95% of elimination at 20 min of the process action). The copoazu extract components acted as natural complexing agents, maintaining the soluble iron up to 2 mg L-1 even after 90 min and, consequently, enhancing the pollutant degradation. The effect of copoazu extract dose on the process performance was also assessed, finding that an iron:polyphenols (from the copoazu extract) at a molar ratio equal to 1:0.16 was the most favorable condition. Then, the process improved by copoazu extract was applied to raw municipal wastewater. Remarkably, the process led to ~90% of total pharmaceuticals degradation at 20 min of treatment. This work evidenced the feasibility of amazonian fruit extracts to improve the solar photo-Fenton process to degrade pharmaceuticals in aqueous matrices at near-neutral pH.


Subject(s)
Wastewater , Water Pollutants, Chemical , Fruit/chemistry , Hydrogen Peroxide , Iron , Oxidation-Reduction , Pharmaceutical Preparations , Plant Extracts , Water Pollutants, Chemical/analysis
20.
Molecules ; 26(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199337

ABSTRACT

This study aimed to understand the adsorption process of cephalexin (CPX) from aqueous solution by a biochar produced from the fiber residue of palm oil. Scanning electron microscopy, Fourier transform infrared spectroscopy, Boehm titration, and the point of zero charge were used to characterize the morphology and surface functional groups of the adsorbent. Batch tests were carried out to evaluate the effects of the solution pH, temperature, and antibiotic structure. The adsorption behavior followed the Langmuir model and pseudo-second-order model with a maximum CPX adsorption capacity of 57.47 mg g-1. Tests on the thermodynamic behavior suggested that chemisorption occurs with an activation energy of 91.6 kJ mol-1 through a spontaneous endothermic process. Electrostatic interactions and hydrogen bonding represent the most likely adsorption mechanisms, although π-π interactions also appear to contribute. Finally, the CPX removal efficiency of the adsorbent was evaluated for synthetic matrices of municipal wastewater and urine. Promising results were obtained, indicating that this adsorbent can potentially be applied to purifying wastewater that contains trace antibiotics.


Subject(s)
Cephalexin/analysis , Palm Oil/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Charcoal/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Temperature , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL