Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Data Brief ; 54: 110356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600990

ABSTRACT

Positioning in indoor scenarios using signals of opportunity is an effective solution enabling accurate and reliable performance in Global Navigation Satellite System (GNSS)-obscured scenarios. Despite the availability of numerous fingerprinting datasets utilizing various wireless signals, the challenge of device heterogeneity and sample density remains an unanswered issue. To address this gap, this work introduces TUJI1, an anonymized IEEE 802.11 Wireless LAN (Wi-Fi) fingerprinting dataset collected using 5 different commercial devices in a fine-grained grid. The dataset contains the matched fingerprints of Received Signal Strength Indicator (RSSI) measurements with the corresponding coordinates, split into training and testing subsets for effortless and fair reproducibility.

2.
Sensors (Basel) ; 23(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36772484

ABSTRACT

The Special Issue "Signal Processing and Machine Learning for Smart Sensing Applications" focused on the publication of advanced signal processing methods by means of state-of-the-art machine learning technologies for smart sensing applications [...].

3.
Sensors (Basel) ; 22(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36236470

ABSTRACT

Locating devices in indoor environments has become a key issue for many emerging location-based applications and intelligent spaces in different fields [...].


Subject(s)
Algorithms
4.
Sci Data ; 9(1): 281, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35676266

ABSTRACT

The demand to enhance distance estimation and location accuracy in a variety of Non-Line-of-Sight (NLOS) indoor environments has boosted investigation into infrastructure-less ranging and collaborative positioning approaches. Unfortunately, capturing the required measurements to support such systems is tedious and time-consuming, as it requires simultaneous measurements using multiple mobile devices, and no such database are available in literature. This article presents a Bluetooth Low Energy (BLE) database, including Received-Signal-Strength (RSS) and Ground-Truth (GT) positions, for indoor positioning and ranging applications, using mobile devices as transmitters and receivers. The database is composed of three subsets: one devoted to the calibration in an indoor scenario; one for ranging and collaborative positioning under Non-Line-of-Sight conditions; and one for ranging and collaborative positioning in real office conditions. As a validation of the dataset, a baseline analysis for data visualization, data filtering and collaborative distance estimation applying a path-loss based on the Levenberg-Marquardt Least Squares Trilateration method are included.

5.
Sensors (Basel) ; 22(12)2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35746404

ABSTRACT

Nowadays, there are a multitude of solutions for indoor positioning, as opposed to standards for outdoor positioning such as GPS. Among the different existing studies on indoor positioning, the use of Wi-Fi signals together with Machine Learning algorithms is one of the most important, as it takes advantage of the current deployment of Wi-Fi networks and the increase in the computing power of computers. Thanks to this, the number of articles published in recent years has been increasing. This fact makes a review necessary in order to understand the current state of this field and to classify different parameters that are very useful for future studies. What are the most widely used machine learning techniques? In what situations have they been tested? How accurate are they? Have datasets been properly used? What type of Wi-Fi signals have been used? These and other questions are answered in this analysis, in which 119 papers are analyzed in depth following PRISMA guidelines.

6.
Sensors (Basel) ; 22(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35408214

ABSTRACT

Multiple sensors are embedded in wearable devices [...].


Subject(s)
Wearable Electronic Devices
7.
Sensors (Basel) ; 21(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540703

ABSTRACT

Research and development in Collaborative Indoor Positioning Systems (CIPSs) is growing steadily due to their potential to improve on the performance of their non-collaborative counterparts. In contrast to the outdoors scenario, where Global Navigation Satellite System is widely adopted, in (collaborative) indoor positioning systems a large variety of technologies, techniques, and methods is being used. Moreover, the diversity of evaluation procedures and scenarios hinders a direct comparison. This paper presents a systematic review that gives a general view of the current CIPSs. A total of 84 works, published between 2006 and 2020, have been identified. These articles were analyzed and classified according to the described system's architecture, infrastructure, technologies, techniques, methods, and evaluation. The results indicate a growing interest in collaborative positioning, and the trend tend to be towards the use of distributed architectures and infrastructure-less systems. Moreover, the most used technologies to determine the collaborative positioning between users are wireless communication technologies (Wi-Fi, Ultra-WideBand, and Bluetooth). The predominant collaborative positioning techniques are Received Signal Strength Indication, Fingerprinting, and Time of Arrival/Flight, and the collaborative methods are particle filters, Belief Propagation, Extended Kalman Filter, and Least Squares. Simulations are used as the main evaluation procedure. On the basis of the analysis and results, several promising future research avenues and gaps in research were identified.

8.
Sensors (Basel) ; 22(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35009652

ABSTRACT

Cloud Computing and Cloud Platforms have become an essential resource for businesses, due to their advanced capabilities, performance, and functionalities. Data redundancy, scalability, and security, are among the key features offered by cloud platforms. Location-Based Services (LBS) often exploit cloud platforms to host positioning and localisation systems. This paper introduces a systematic review of current positioning platforms for GNSS-denied scenarios. We have undertaken a comprehensive analysis of each component of the positioning and localisation systems, including techniques, protocols, standards, and cloud services used in the state-of-the-art deployments. Furthermore, this paper identifies the limitations of existing solutions, outlining shortcomings in areas that are rarely subjected to scrutiny in existing reviews of indoor positioning, such as computing paradigms, privacy, and fault tolerance. We then examine contributions in the areas of efficient computation, interoperability, positioning, and localisation. Finally, we provide a brief discussion concerning the challenges for cloud platforms based on GNSS-denied scenarios.

9.
Sensors (Basel) ; 20(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512946

ABSTRACT

In recent times, Received Signal Strength (RSS)-based Wi-Fi fingerprinting localization has become one of the most promising techniques for indoor localization. The primary aim of RSS is to check the quality of the signal to determine the coverage and the quality of service. Therefore, fine-resolution RSS is needed, which is generally expressed by 1-dBm granularity. However, we found that, for fingerprinting localization, fine-granular RSS is unnecessary. A coarse-granular RSS can yield the same positioning accuracy. In this paper, we propose quantization for only the effective portion of the signal strength for fingerprinting localization. We found that, if a quantized RSS fingerprint can carry the major characteristics of a radio environment, it is sufficient for localization. Five publicly open fingerprinting databases with four different quantization strategies were used to evaluate the study. The proposed method can help to simplify the hardware configuration, enhance security, and save approximately 40-60% storage space and data traffic.

10.
Sensors (Basel) ; 19(20)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627331

ABSTRACT

An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys.

11.
Sensors (Basel) ; 18(2)2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29415508

ABSTRACT

The development of indoor positioning solutions using smartphones is a growing activity with an enormous potential for everyday life and professional applications. The research activities on this topic concentrate on the development of new positioning solutions that are tested in specific environments under their own evaluation metrics. To explore the real positioning quality of smartphone-based solutions and their capabilities for seamlessly adapting to different scenarios, it is needed to find fair evaluation frameworks. The design of competitions using extensive pre-recorded datasets is a valid way to generate open data for comparing the different solutions created by research teams. In this paper, we discuss the details of the 2017 IPIN indoor localization competition, the different datasets created, the teams participating in the event, and the results they obtained. We compare these results with other competition-based approaches (Microsoft and Perf-loc) and on-line evaluation web sites. The lessons learned by organising these competitions and the benefits for the community are addressed along the paper. Our analysis paves the way for future developments on the standardization of evaluations and for creating a widely-adopted benchmark strategy for researchers and companies in the field.

12.
Sensors (Basel) ; 17(12)2017 Nov 27.
Article in English | MEDLINE | ID: mdl-29186921

ABSTRACT

Wi-Fi fingerprinting is widely used for indoor positioning and indoor navigation due to the ubiquity of wireless networks, high proliferation of Wi-Fi-enabled mobile devices, and its reasonable positioning accuracy. The assumption is that the position can be estimated based on the received signal strength intensity from multiple wireless access points at a given point. The positioning accuracy, within a few meters, enables the use of Wi-Fi fingerprinting in many different applications. However, it has been detected that the positioning error might be very large in a few cases, which might prevent its use in applications with high accuracy positioning requirements. Hybrid methods are the new trend in indoor positioning since they benefit from multiple diverse technologies (Wi-Fi, Bluetooth, and Inertial Sensors, among many others) and, therefore, they can provide a more robust positioning accuracy. In order to have an optimal combination of technologies, it is crucial to identify when large errors occur and prevent the use of extremely bad positioning estimations in hybrid algorithms. This paper investigates why large positioning errors occur in Wi-Fi fingerprinting and how to detect them by using the received signal strength intensities.

13.
Sensors (Basel) ; 17(10)2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29027948

ABSTRACT

In recent years, indoor localization systems have been the object of significant research activity and of growing interest for their great expected social impact and their impressive business potential. Application areas include tracking and navigation, activity monitoring, personalized advertising, Active and Assisted Living (AAL), traceability, Internet of Things (IoT) networks, and Home-land Security. In spite of the numerous research advances and the great industrial interest, no canned solutions have yet been defined. The diversity and heterogeneity of applications, scenarios, sensor and user requirements, make it difficult to create uniform solutions. From that diverse reality, a main problem is derived that consists in the lack of a consensus both in terms of the metrics and the procedures used to measure the performance of the different indoor localization and navigation proposals. This paper introduces the general lines of the EvAAL benchmarking framework, which is aimed at a fair comparison of indoor positioning systems through a challenging competition under complex, realistic conditions. To evaluate the framework capabilities, we show how it was used in the 2016 Indoor Positioning and Indoor Navigation (IPIN) Competition. The 2016 IPIN competition considered three different scenario dimensions, with a variety of use cases: (1) pedestrian versus robotic navigation, (2) smartphones versus custom hardware usage and (3) real-time positioning versus off-line post-processing. A total of four competition tracks were evaluated under the same EvAAL benchmark framework in order to validate its potential to become a standard for evaluating indoor localization solutions. The experience gained during the competition and feedback from track organizers and competitors showed that the EvAAL framework is flexible enough to successfully fit the very different tracks and appears adequate to compare indoor positioning systems.

14.
Sensors (Basel) ; 17(3)2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28287447

ABSTRACT

This paper presents the analysis and discussion of the off-site localization competition track, which took place during the Seventh International Conference on Indoor Positioning and Indoor Navigation (IPIN 2016). Five international teams proposed different strategies for smartphone-based indoor positioning using the same reference data. The competitors were provided with several smartphone-collected signal datasets, some of which were used for training (known trajectories), and others for evaluating (unknown trajectories). The competition permits a coherent evaluation method of the competitors' estimations, where inside information to fine-tune their systems is not offered, and thus provides, in our opinion, a good starting point to introduce a fair comparison between the smartphone-based systems found in the literature. The methodology, experience, feedback from competitors and future working lines are described.

15.
Sensors (Basel) ; 17(1)2016 Dec 25.
Article in English | MEDLINE | ID: mdl-28029142

ABSTRACT

The urban population is growing at such a rate that by 2050 it is estimated that 84% of the world's population will live in cities, with flats being the most common living place. Moreover, WiFi technology is present in most developed country urban areas, with a quick growth in developing countries. New Ambient-Assisted Living applications will be developed in the near future having user positioning as ground technology: elderly tele-care, energy consumption, security and the like are strongly based on indoor positioning information. We present an Indoor Positioning System for wearable devices based on WiFi fingerprinting. Smart-watch wearable devices are used to acquire the WiFi strength signals of the surrounding Wireless Access Points used to build an ensemble of Machine Learning classification algorithms. Once built, the ensemble algorithm is used to locate a user based on the WiFi strength signals provided by the wearable device. Experimental results for five different urban flats are reported, showing that the system is robust and reliable enough for locating a user at room level into his/her home. Another interesting characteristic of the presented system is that it does not require deployment of any infrastructure, and it is unobtrusive, the only device required for it to work is a smart-watch.


Subject(s)
Algorithms , Machine Learning , Monitoring, Ambulatory/methods , Assisted Living Facilities , Humans , Internet , Wireless Technology/instrumentation
16.
Hum Mov Sci ; 41: 165-78, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25816795

ABSTRACT

In this paper, a new methodology is used to perform team activity recognition and analysis in Association Football. It is based on pattern recognition and machine learning techniques. In particular, a strategy based on the Bag-of-Words (BoW) technique is used to characterize short Football video clips that are used to explain the team's performance and to train advanced classifiers in automatic recognition of team activities. In addition to the neural network-based classifier, three more classifier families are tested: the k-Nearest Neighbor, the Support Vector Machine and the Random Forest. The results obtained show that the proposed methodology is able to explain the most common movements of a team and to perform the team activity recognition task with high accuracy when classifying three Football actions: Ball Possession, Quick Attack and Set Piece. Random Forest is the classifier obtaining the best classification results.


Subject(s)
Athletic Performance , Pattern Recognition, Automated , Support Vector Machine , Algorithms , Artificial Intelligence , Humans , Motion , Neural Networks, Computer , Soccer
17.
Sensors (Basel) ; 15(3): 5555-82, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25756864

ABSTRACT

The need for constant monitoring of environmental conditions has produced an increase in the development of wireless sensor networks (WSN). The drive towards smart cities has produced the need for smart sensors to be able to monitor what is happening in our cities. This, combined with the decrease in hardware component prices and the increase in the popularity of open hardware, has favored the deployment of sensor networks based on open hardware. The new trends in Internet Protocol (IP) communication between sensor nodes allow sensor access via the Internet, turning them into smart objects (Internet of Things and Web of Things). Currently, WSNs provide data in different formats. There is a lack of communication protocol standardization, which turns into interoperability issues when connecting different sensor networks or even when connecting different sensor nodes within the same network. This work presents a sensorized platform proposal that adheres to the principles of the Internet of Things and theWeb of Things. Wireless sensor nodes were built using open hardware solutions, and communications rely on the HTTP/IP Internet protocols. The Open Geospatial Consortium (OGC) SensorThings API candidate standard was used as a neutral format to avoid interoperability issues. An environmental WSN developed following the proposed architecture was built as a proof of concept. Details on how to build each node and a study regarding energy concerns are presented.

18.
J Am Med Inform Assoc ; 20(e2): e288-96, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23934950

ABSTRACT

BACKGROUND: The secondary use of electronic healthcare records (EHRs) often requires the identification of patient cohorts. In this context, an important problem is the heterogeneity of clinical data sources, which can be overcome with the combined use of standardized information models, virtual health records, and semantic technologies, since each of them contributes to solving aspects related to the semantic interoperability of EHR data. OBJECTIVE: To develop methods allowing for a direct use of EHR data for the identification of patient cohorts leveraging current EHR standards and semantic web technologies. MATERIALS AND METHODS: We propose to take advantage of the best features of working with EHR standards and ontologies. Our proposal is based on our previous results and experience working with both technological infrastructures. Our main principle is to perform each activity at the abstraction level with the most appropriate technology available. This means that part of the processing will be performed using archetypes (ie, data level) and the rest using ontologies (ie, knowledge level). Our approach will start working with EHR data in proprietary format, which will be first normalized and elaborated using EHR standards and then transformed into a semantic representation, which will be exploited by automated reasoning. RESULTS: We have applied our approach to protocols for colorectal cancer screening. The results comprise the archetypes, ontologies, and datasets developed for the standardization and semantic analysis of EHR data. Anonymized real data have been used and the patients have been successfully classified by the risk of developing colorectal cancer. CONCLUSIONS: This work provides new insights in how archetypes and ontologies can be effectively combined for EHR-driven phenotyping. The methodological approach can be applied to other problems provided that suitable archetypes, ontologies, and classification rules can be designed.


Subject(s)
Cohort Studies , Data Mining/methods , Electronic Health Records , Algorithms , Biological Ontologies , Electronic Health Records/standards , Humans , Internet , Phenotype , Semantics
19.
Sensors (Basel) ; 11(4): 4086-103, 2011.
Article in English | MEDLINE | ID: mdl-22163838

ABSTRACT

One of the most important parts of an autonomous robot is to establish the path by which it should navigate in order to successfully achieve its goals. In the case of agricultural robotics, a procedure that determines this desired path can be useful. In this paper, a new virtual sensor is introduced in order to classify the elements of an orange grove. This proposed sensor will be based on a color CCD camera with auto iris lens which is in charge of doing the captures of the real environment and an ensemble of neural networks which processes the capture and differentiates each element of the image. Then, the Hough's transform and other operations will be applied in order to extract the desired path from the classification performed by the virtual sensory system. With this approach, the robotic system can correct its deviation with respect to the desired path. The results show that the sensory system properly classifies the elements of the grove and can set trajectory of the robot.


Subject(s)
Image Processing, Computer-Assisted/methods , Robotics , Algorithms , Citrus sinensis/growth & development , Humans , Image Processing, Computer-Assisted/instrumentation , Neural Networks, Computer
20.
Sensors (Basel) ; 11(4): 4385-400, 2011.
Article in English | MEDLINE | ID: mdl-22163853

ABSTRACT

The control architecture is one of the most important part of agricultural robotics and other robotic systems. Furthermore its importance increases when the system involves a group of heterogeneous robots that should cooperate to achieve a global goal. A new control architecture is introduced in this paper for groups of robots in charge of doing maintenance tasks in agricultural environments. Some important features such as scalability, code reuse, hardware abstraction and data distribution have been considered in the design of the new architecture. Furthermore, coordination and cooperation among the different elements in the system is allowed in the proposed control system. By integrating a network oriented device server Player, Java Agent Development Framework (JADE) and High Level Architecture (HLA), the previous concepts have been considered in the new architecture presented in this paper. HLA can be considered the most important part because it not only allows the data distribution and implicit communication among the parts of the system but also allows to simultaneously operate with simulated and real entities, thus allowing the use of hybrid systems in the development of applications.


Subject(s)
Agriculture , Equipment Design , Robotics , Algorithms , Humans , Industry
SELECTION OF CITATIONS
SEARCH DETAIL
...