Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Cell Rep Methods ; 4(5): 100772, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38744290

ABSTRACT

Localized cutaneous neurofibromas (cNFs) are benign tumors that arise in the dermis of patients affected by neurofibromatosis type 1 syndrome. cNFs are benign lesions: they do not undergo malignant transformation or metastasize. Nevertheless, they can cover a significant proportion of the body, with some individuals developing hundreds to thousands of lesions. cNFs can cause pain, itching, and disfigurement resulting in substantial socio-emotional repercussions. Currently, surgery and laser desiccation are the sole treatment options but may result in scarring and potential regrowth from incomplete removal. To identify effective systemic therapies, we introduce an approach to establish and screen cNF organoids. We optimized conditions to support the ex vivo growth of genomically diverse cNFs. Patient-derived cNF organoids closely recapitulate cellular and molecular features of parental tumors as measured by immunohistopathology, methylation, RNA sequencing, and flow cytometry. Our cNF organoid platform enables rapid screening of hundreds of compounds in a patient- and tumor-specific manner.


Subject(s)
Neurofibroma , Organoids , Skin Neoplasms , Humans , Organoids/pathology , Skin Neoplasms/pathology , Neurofibroma/pathology , Neurofibroma/surgery , Neurofibromatosis 1/pathology
2.
Arthritis Rheumatol ; 76(4): 531-540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37984422

ABSTRACT

OBJECTIVE: We analyzed the impact of amino acid (AA) availability on the inflammatory response in arthritis. METHODS: We stimulated rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) with tumor necrosis factor (TNF) in the presence or absence of proteinogenic AAs and measured their response by QuantSeq 3' messenger RNA sequencing, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. Signal transduction events were determined by Western blot. We performed K/BxN serum transfer arthritis in mice receiving a normal and a low-protein diet and analyzed arthritis clinically and histologically. RESULTS: Deprivation of AAs decreased the expression of a specific subset of genes, including the chemokines CXCL10, CCL2, and CCL5 in TNF-stimulated FLSs. Mechanistically, the presence of AAs was required for the TNF-induced activation of an interferon regulatory factor 1 (IRF1)-STAT1 signaling circuit that drives the expression of chemotactic factors. The expression of IRF1 and the IRF1-dependent gene set in FLSs was highly correlated with the presence of inflammatory cells in human RA, emphasizing the important role of this AA-dependent pathway in inflammatory cell recruitment to the synovial tissue. Finally, we show that mice receiving a low-protein diet expressed less IRF1 in the inflamed synovium and consequently developed reduced clinical and histologic signs of arthritis. CONCLUSION: AA deprivation reduces the severity of arthritis by suppressing the expression of IRF1-STAT1-driven chemokines, which are crucial for leukocyte recruitment to the arthritic joint. Overall, our study provides novel insights into critical determinants of inflammatory arthritis and may pave the way for dietary intervention trials in RA.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Humans , Mice , Animals , Synoviocytes/metabolism , Amino Acids/metabolism , Arthritis, Rheumatoid/genetics , Tumor Necrosis Factor-alpha/metabolism , Chemokine CXCL10/metabolism , Amines/metabolism , Fibroblasts/metabolism , Leukocytes/metabolism , Leukocytes/pathology , Cells, Cultured
3.
J Exp Med ; 220(11)2023 11 06.
Article in English | MEDLINE | ID: mdl-37703004

ABSTRACT

T follicular helper (Tfh) cells are essential for the development of germinal center B cells and high-affinity antibody-producing B cells in humans and mice. Here, we identify the guanine nucleotide exchange factor (GEF) Rin-like (Rinl) as a negative regulator of Tfh generation. Loss of Rinl leads to an increase of Tfh in aging, upon in vivo immunization and acute LCMV Armstrong infection in mice, and in human CD4+ T cell in vitro cultures. Mechanistically, adoptive transfer experiments using WT and Rinl-KO naïve CD4+ T cells unraveled T cell-intrinsic GEF-dependent functions of Rinl. Further, Rinl regulates CD28 internalization and signaling, thereby shaping CD4+ T cell activation and differentiation. Thus, our results identify the GEF Rinl as a negative regulator of global Tfh differentiation in an immunological context and species-independent manner, and furthermore, connect Rinl with CD28 internalization and signaling pathways in CD4+ T cells, demonstrating for the first time the importance of endocytic processes for Tfh differentiation.


Subject(s)
CD28 Antigens , Guanine Nucleotide Exchange Factors , Humans , Animals , Mice , Signal Transduction , Cell Differentiation , Adoptive Transfer
4.
Ann Rheum Dis ; 82(9): 1142-1152, 2023 09.
Article in English | MEDLINE | ID: mdl-37344156

ABSTRACT

INTRODUCTION: Structural reorganisation of the synovium with expansion of fibroblast-like synoviocytes (FLS) and influx of immune cells is a hallmark of rheumatoid arthritis (RA). Activated FLS are increasingly recognised as a critical component driving synovial tissue remodelling by interacting with immune cells resulting in distinct synovial pathotypes of RA. METHODS: Automated high-content fluorescence microscopy of co-cultured cytokine-activated FLS and autologous peripheral CD4+ T cells from patients with RA was established to quantify cell-cell interactions. Phenotypic profiling of cytokine-treated FLS and co-cultured T cells was done by flow cytometry and RNA-Seq, which were integrated with publicly available transcriptomic data from patients with different histological synovial pathotypes. Computational prediction and knock-down experiments were performed in FLS to identify adhesion molecules for cell-cell interaction. RESULTS: Cytokine stimulation, especially with TNF-α, led to enhanced FLS-T cell interaction resulting in cell-cell contact-dependent activation, proliferation and differentiation of T cells. Signatures of cytokine-activated FLS were significantly enriched in RA synovial tissues defined as lymphoid-rich or leucocyte-rich pathotypes, with the most prominent effects for TNF-α. FLS cytokine signatures correlated with the number of infiltrating CD4+ T cells in synovial tissue of patients with RA. Ligand-receptor pair interaction analysis identified ICAM1 on FLS as an important mediator in TNF-mediated FLS-T cell interaction. Both, ICAM1 and its receptors were overexpressed in TNF-treated FLS and co-cultured T cells. Knock-down of ICAM1 in FLS resulted in reduced TNF-mediated FLS-T cell interaction. CONCLUSION: Our study highlights the role of cytokine-activated FLS in orchestrating inflammation-associated synovial pathotypes providing novel insights into disease mechanisms of RA.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Humans , Cytokines , Tumor Necrosis Factor-alpha/pharmacology , Synovial Membrane/pathology , Synoviocytes/pathology , Fibroblasts/pathology , Cells, Cultured
5.
Front Oncol ; 12: 869108, 2022.
Article in English | MEDLINE | ID: mdl-35600369

ABSTRACT

Liquid biopsies are gaining more traction as non-invasive tools for the diagnosis and monitoring of cancer. In a new paradigm of cancer treatment, a synergistic botanical drug combination (APG-157) consisting of multiple molecules, is emerging as a new class of cancer therapeutics, targeting multiple pathways and providing a durable clinical response, wide therapeutic window and high level of safety. Monitoring the efficacy of such drugs involves assessing multiple molecules and cellular events simultaneously. We report, for the first time, a methodology that uses circulating plasma cell-free RNA (cfRNA) as a sensitive indicator of patient response upon drug treatment. Plasma was collected from six patients with head and neck cancer (HNC) and four healthy controls receiving three doses of 100 or 200 mg APG-157 or placebo through an oral mucosal route, before treatment and on multiple points post-dosing. Circulating cfRNA was extracted from plasma at 0-, 3- and 24-hours post-treatment, followed by RNA sequencing. We performed comparative analyses of the circulating transcriptome and were able to detect significant perturbation following APG-157 treatment. Transcripts associated with inflammatory response, leukocyte activation and cytokine were upregulated upon treatment with APG-157 in cancer patients, but not in healthy or placebo-treated patients. A platelet-related transcriptional signature could be detected in cancer patients but not in healthy individuals, indicating a platelet-centric pathway involved in the development of HNC. These results from a Phase 1 study are a proof of principle of the utility of cfRNAs as non-invasive circulating biomarkers for monitoring the efficacy of APG-157 in HNC.

6.
Sci Rep ; 12(1): 8438, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589747

ABSTRACT

The placenta is a heterogeneous organ whose development involves complex interactions of trophoblasts with decidual, vascular, and immune cells at the fetal-maternal interface. It maintains a critical balance between maternal and fetal homeostasis. Placental dysfunction can lead to adverse pregnancy outcomes including intra-uterine growth restriction, pre-eclampsia, or pre-term birth. Exposure to environmental pollutants contributes to the development of placental abnormalities, with poorly understood molecular underpinning. Here we used a mouse (C57BL/6) model of environmental pollutant exposure by administration of a particulate matter (SRM1649b at 300 µg/day/mouse) suspension intra-nasally beginning 2 months before conception and during gestation, in comparison to saline-exposed controls. Placental transcriptomes, at day 19 of gestation, were determined using bulk RNA-seq from whole placentas of exposed (n = 4) and control (n = 4) animals and scRNAseq of three distinct placental layers, followed by flow cytometry analysis of the placental immune cell landscape. Our results indicate a reduction in vascular placental cells, especially cells responsible for structural integrity, and increase in trophoblast proliferation in animals exposed to particulate matter. Pollution-induced inflammation was also evident, especially in the decidual layer. These data indicate that environmental exposure to air pollutants triggers changes in the placental cellular composition, mediating adverse pregnancy outcomes.


Subject(s)
Air Pollutants , Placenta Diseases , Air Pollutants/toxicity , Animals , Decidua , Female , Humans , Mice , Mice, Inbred C57BL , Particulate Matter/toxicity , Placenta , Pregnancy , Trophoblasts
7.
Rheumatology (Oxford) ; 61(11): 4535-4546, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35258553

ABSTRACT

OBJECTIVES: TNF-induced activation of fibroblast-like synoviocytes (FLS) is a critical determinant for synovial inflammation and joint destruction in RA. The detrimental role of TNF-receptor 1 (TNFR1) has thoroughly been characterized. The contributions of TNFR2, however, are largely unknown. This study was performed to delineate the role of TNFR2 in human FLS activation. METHODS: TNFR2 expression in synovial tissue samples was determined by immunohistochemistry. Expression of TNFR2 was silenced using RNAi or CRISPR/Cas9 technologies. Global transcriptional changes were determined by RNA-seq. QPCR, ELISA and immunoblotting were used to validate RNA-seq results and to uncover pathways operating downstream of TNFR2 in FLS. RESULTS: TNFR2 expression was increased in RA when compared with OA synovial tissues. In particular, RA-FLS demonstrated higher levels of TNFR2 when compared with OA-FLS. TNFR2 expression in RA-FLS correlated with RA disease activity, synovial T- and B-cell infiltration. TNF and IL1ß were identified as inflammatory mediators that upregulate TNFR2 in RA-FLS. Silencing of TNFR2 in RA-FLS markedly diminished the TNF-induced expression of inflammatory cytokines and chemokines, including CXCR3-binding chemokines and the B-cell activating factor TNFSF13B. Immunobiochemical analyses revealed that TNFR2-mediated expression of inflammatory mediators critically depends on STAT1. CONCLUSION: Our results define a critical role for TNFR2 in FLS-driven inflammation and unfold its participation in the unresolved course of synovial inflammation in RA.


Subject(s)
Arthritis, Rheumatoid , Receptors, Tumor Necrosis Factor, Type II , Synoviocytes , Humans , Arthritis, Rheumatoid/metabolism , Cells, Cultured , Fibroblasts/metabolism , Inflammation/metabolism , Inflammation Mediators/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Synovial Membrane/metabolism , Synoviocytes/metabolism
8.
Eur J Nutr ; 61(1): 169-182, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34240265

ABSTRACT

PURPOSE: Cardiovascular diseases and cognitive decline, predominant in ageing populations, share common features of dysregulated one-carbon (1C) and cardiometabolic homeostasis. However, few studies have addressed the impact of multifaceted lifestyle interventions in older adults that combine both nutritional supplementation and resistance training on the co-regulation of 1C metabolites and cardiometabolic markers. METHODS: 95 institutionalised older adults (83 ± 6 years, 88.4% female) were randomised to receive resistance training with or without nutritional supplementation (Fortifit), or cognitive training (control for socialisation) for 6 months. Fasting plasma 1C metabolite concentrations, analysed by liquid chromatography coupled with mass spectrometry, and cardiometabolic parameters were measured at baseline and the 3- and 6-month follow-ups. RESULTS: Regardless of the intervention group, choline was elevated after 3 months, while cysteine and methionine remained elevated after 6 months (mixed model time effects, p < 0.05). Elevated dimethylglycine and lower betaine concentrations were correlated with an unfavourable cardiometabolic profile at baseline (spearman correlations, p < 0.05). However, increasing choline and dimethylglycine concentrations were associated with improvements in lipid metabolism in those receiving supplementation (regression model interaction, p < 0.05). CONCLUSION: Choline metabolites, including choline, betaine and dimethylglycine, were central to the co-regulation of 1C metabolism and cardiometabolic health in older adults. Metabolites that indicate upregulated betaine-dependent homocysteine remethylation were elevated in those with the greatest cardiometabolic risk at baseline, but associated with improvements in lipid parameters following resistance training with nutritional supplementation. The relevance of how 1C metabolite status might be optimised to protect against cardiometabolic dysregulation requires further attention.


Subject(s)
Carbon , Cardiovascular Diseases , Aged , Aging , Betaine , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Choline , Dietary Supplements , Female , Homocysteine , Humans , Male
9.
J Med Internet Res ; 24(1): e28152, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34951864

ABSTRACT

BACKGROUND: Social media has been extensively used for the communication of health-related information and consecutively for the potential spread of medical misinformation. Conventional systematic reviews have been published on this topic to identify original articles and to summarize their methodological approaches and themes. A bibliometric study could complement their findings, for instance, by evaluating the geographical distribution of the publications and determining if they were well cited and disseminated in high-impact journals. OBJECTIVE: The aim of this study was to perform a bibliometric analysis of the current literature to discover the prevalent trends and topics related to medical misinformation on social media. METHODS: The Web of Science Core Collection electronic database was accessed to identify relevant papers with the following search string: ALL=(misinformati* OR "wrong informati*" OR disinformati* OR "misleading informati*" OR "fake news*") AND ALL=(medic* OR illness* OR disease* OR health* OR pharma* OR drug* OR therap*) AND ALL=("social media*" OR Facebook* OR Twitter* OR Instagram* OR YouTube* OR Weibo* OR Whatsapp* OR Reddit* OR TikTok* OR WeChat*). Full records were exported to a bibliometric software, VOSviewer, to link bibliographic information with citation data. Term and keyword maps were created to illustrate recurring terms and keywords. RESULTS: Based on an analysis of 529 papers on medical and health-related misinformation on social media, we found that the most popularly investigated social media platforms were Twitter (n=90), YouTube (n=67), and Facebook (n=57). Articles targeting these 3 platforms had higher citations per paper (>13.7) than articles covering other social media platforms (Instagram, Weibo, WhatsApp, Reddit, and WeChat; citations per paper <8.7). Moreover, social media platform-specific papers accounted for 44.1% (233/529) of all identified publications. Investigations on these platforms had different foci. Twitter-based research explored cyberchondria and hypochondriasis, YouTube-based research explored tobacco smoking, and Facebook-based research studied vaccine hesitancy related to autism. COVID-19 was a common topic investigated across all platforms. Overall, the United States contributed to half of all identified papers, and 80% of the top 10 most productive institutions were based in this country. The identified papers were mostly published in journals of the categories public environmental and occupational health, communication, health care sciences services, medical informatics, and medicine general internal, with the top journal being the Journal of Medical Internet Research. CONCLUSIONS: There is a significant platform-specific topic preference for social media investigations on medical misinformation. With a large population of internet users from China, it may be reasonably expected that Weibo, WeChat, and TikTok (and its Chinese version Douyin) would be more investigated in future studies. Currently, these platforms present research gaps that leave their usage and information dissemination warranting further evaluation. Future studies should also include social platforms targeting non-English users to provide a wider global perspective.


Subject(s)
COVID-19 , Social Media , Bibliometrics , Communication , Disinformation , Humans , SARS-CoV-2 , United States , Vaccination Hesitancy
10.
Metabolism ; 125: 154913, 2021 12.
Article in English | MEDLINE | ID: mdl-34653509

ABSTRACT

BACKGROUND: The protective role of mildly elevated bilirubin against CVD and diabetes mellitus type 2 (DMT2) is associated with a favorable lipid phenotype. As the mechanistic understanding of this protection in humans remains elusive, we aimed to assess the metabolomics profile of mildly hyperbilirubinemic (Gilbert's syndrome; GS) individuals especially targeting lipid catabolism. METHODS AND RESULTS: Using NMR serum metabolomics of 56 GS individuals and 56 age and gender-matched healthy controls, GS individuals demonstrated significantly greater concentrations of acetylcarnitine (+20%, p < 0.001) and the ketone bodies, 3-hydroxybutyric acid (+132%, p < 0.001), acetoacetic acid (+95%, p < 0.001) and acetone (+46%, p < 0.001). Metabolites associated with an increased mitochondrial lipid metabolism such as citrate (+15%, p < 0.001), anaplerotic amino acid intermediates and creatinine were significantly greater and creatine significantly reduced in GS individuals. Stimulators of lipid catabolism including AMPK (+59%, p < 0.001), pPPARα (+24%, p < 0.001) and T3 (+9%, p = 0.009) supported the metabolomics data while concomitantly blood glucose and insulin (-33%, p = 0.002) levels were significantly reduced. We further showed that the increased lipid catabolism partially mediates the favorable lipid phenotype (lower triglycerides) of GS individuals. Increased trimethylamine (+35%, p < 0.001) indicated changes in trimethylamine metabolism, an emerging predictor of metabolic health. CONCLUSION: We showed an enhanced lipid catabolism in mildly hyperbilirubinemic individuals, novel evidence as to why these individuals are leaner and protected against chronic metabolic diseases emphasizing bilirubin to be a promising future target in obese and dyslipidemia patients.


Subject(s)
Bilirubin/blood , Gilbert Disease/blood , Lipid Metabolism/physiology , Metabolome/physiology , Adult , Female , Humans , Male , Metabolomics , Middle Aged , Young Adult
11.
Front Cell Infect Microbiol ; 11: 701109, 2021.
Article in English | MEDLINE | ID: mdl-34604105

ABSTRACT

The heme catabolite bilirubin has anti-inflammatory, anti-oxidative and anti-mutagenic effects and its relation to colorectal cancer (CRC) risk is currently under evaluation. Although the main metabolic steps of bilirubin metabolism, including the formation of stercobilin and urobilin, take place in the human gastrointestinal tract, potential interactions with the human gut microbiota are unexplored. This study investigated, whether gut microbiota composition is altered in Gilbert's Syndrome (GS), a mild form of chronically elevated serum unconjugated bilirubin (UCB) compared to matched controls. Potential differences in the incidence of CRC-associated bacterial species in GS were also assessed. To this end, a secondary investigation of the BILIHEALTH study was performed, assessing 45 adults with elevated UCB levels (GS) against 45 age- and sex-matched controls (C). Fecal microbiota analysis was performed using 16S rRNA gene sequencing. No association between mildly increased UCB and the composition of the gut microbiota in this healthy cohort was found. The alpha and beta diversity did not differ between C and GS and both groups showed a typical representation of the known dominant phyla. Furthermore, no difference in abundance of Firmicutes and Proteobacteria, which have been associated with the mucosa of CRC patients were observed between the groups. A sequence related to the Christensenella minuta strain YIT 12065 was identified with a weak association value of 0.521 as an indicator species in the GS group. This strain has been previously associated with a lower body mass index, which is typical for the GS phenotype. Overall, sex was the only driver for an identifiable difference in the study groups, as demonstrated by a greater bacterial diversity in women. After adjusting for confounding factors and multiple testing, we can conclude that the GS phenotype does not affect the composition of the human gut microbiota in this generally healthy study group.


Subject(s)
Gastrointestinal Microbiome , Gilbert Disease , Case-Control Studies , Clostridiales , Female , Gilbert Disease/genetics , Humans , RNA, Ribosomal, 16S/genetics
12.
Gigascience ; 10(5)2021 05 08.
Article in English | MEDLINE | ID: mdl-33966074

ABSTRACT

BACKGROUND: Bisulfite sequencing is commonly used to measure DNA methylation. Processing bisulfite sequencing data is often challenging owing to the computational demands of mapping a low-complexity, asymmetrical library and the lack of a unified processing toolset to produce an analysis-ready methylation matrix from read alignments. To address these shortcomings, we have developed BiSulfite Bolt (BSBolt), a fast and scalable bisulfite sequencing analysis platform. BSBolt performs a pre-alignment sequencing read assessment step to improve efficiency when handling asymmetrical bisulfite sequencing libraries. FINDINGS: We evaluated BSBolt against simulated and real bisulfite sequencing libraries. We found that BSBolt provides accurate and fast bisulfite sequencing alignments and methylation calls. We also compared BSBolt to several existing bisulfite alignment tools and found BSBolt outperforms Bismark, BSSeeker2, BISCUIT, and BWA-Meth based on alignment accuracy and methylation calling accuracy. CONCLUSION: BSBolt offers streamlined processing of bisulfite sequencing data through an integrated toolset that offers support for simulation, alignment, methylation calling, and data aggregation. BSBolt is implemented as a Python package and command line utility for flexibility when building informatics pipelines. BSBolt is available at https://github.com/NuttyLogic/BSBolt under an MIT license.


Subject(s)
Software , Sulfites , DNA Methylation , High-Throughput Nucleotide Sequencing , Sequence Alignment , Sequence Analysis, DNA
13.
J Med Internet Res ; 23(2): e25499, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33565986

ABSTRACT

BACKGROUND: Virtual reality (VR) and augmented reality (AR) have recently become popular research themes. However, there are no published bibliometric reports that have analyzed the corresponding scientific literature in relation to the application of these technologies in medicine. OBJECTIVE: We used a bibliometric approach to identify and analyze the scientific literature on VR and AR research in medicine, revealing the popular research topics, key authors, scientific institutions, countries, and journals. We further aimed to capture and describe the themes and medical conditions most commonly investigated by VR and AR research. METHODS: The Web of Science electronic database was searched to identify relevant papers on VR research in medicine. Basic publication and citation data were acquired using the "Analyze" and "Create Citation Report" functions of the database. Complete bibliographic data were exported to VOSviewer and Bibliometrix, dedicated bibliometric software packages, for further analyses. Visualization maps were generated to illustrate the recurring keywords and words mentioned in the titles and abstracts. RESULTS: The analysis was based on data from 8399 papers. Major research themes were diagnostic and surgical procedures, as well as rehabilitation. Commonly studied medical conditions were pain, stroke, anxiety, depression, fear, cancer, and neurodegenerative disorders. Overall, contributions to the literature were globally distributed with heaviest contributions from the United States and United Kingdom. Studies from more clinically related research areas such as surgery, psychology, neurosciences, and rehabilitation had higher average numbers of citations than studies from computer sciences and engineering. CONCLUSIONS: The conducted bibliometric analysis unequivocally reveals the versatile emerging applications of VR and AR in medicine. With the further maturation of the technology and improved accessibility in countries where VR and AR research is strong, we expect it to have a marked impact on clinical practice and in the life of patients.


Subject(s)
Augmented Reality , Medicine/standards , Virtual Reality , Female , Humans , Male
14.
Epigenetics ; 16(6): 642-661, 2021 06.
Article in English | MEDLINE | ID: mdl-33045922

ABSTRACT

Although analysis of maternal plasma cell-free content has been employed for screening of genetic abnormalities within a pregnancy, limited attention has been paid to its use for the detection of adverse pregnancy outcomes (APOs) based on placental function. Here we investigated cell-free DNA and RNA content of 102 maternal and 25 cord plasma samples. Employing a novel deconvolution methodology, we found that during the first trimester, placenta-specific DNA increased prior to the subsequent development of gestational diabetes with no change in patients with preeclampsia while decreasing with maternal obesity. Moreover, using cell-free RNA sequencing, APOs revealed 71 differentially expressed genes early in pregnancy. We noticed the upregulation of S100A8, MS4A3, and MMP8 that have been already associated with APOs but also the upregulation of BCL2L15 and the downregulation of ALPL that have never been associated with APOs. We constructed a classifier with a positive predictive ability (AUC) of 0.91 for APOs, 0.86 for preeclampsia alone and 0.64 for GDM. We conclude that placenta-specific cell-free nucleic acids during early gestation provide the possibility of predicting APOs prior to the emergence of characteristic clinical features.


Subject(s)
Cell-Free Nucleic Acids , Pre-Eclampsia , DNA Methylation , Female , Humans , Placenta/metabolism , Pre-Eclampsia/genetics , Pregnancy , Pregnancy Outcome , Transcriptome
15.
JCI Insight ; 5(24)2020 12 17.
Article in English | MEDLINE | ID: mdl-33180747

ABSTRACT

Cardiac fibrosis is a pathophysiologic hallmark of the aging heart, but little is known about how fibroblast proliferation and transcriptional programs change throughout the life span of the organism. Using EdU pulse labeling, we demonstrated that more than 50% of cardiac fibroblasts were actively proliferating in the first day of postnatal life. However, by 4 weeks, only 10% of cardiac fibroblasts were proliferating. By early adulthood, the fraction of proliferating cardiac fibroblasts further decreased to approximately 2%, where it remained throughout the rest of the organism's life. We observed that maximal changes in cardiac fibroblast transcriptional programs and, in particular, collagen and ECM gene expression both in the heart and cardiac fibroblast were maximal in the newly born and juvenile animal and decreased with organismal aging. Examination of DNA methylation changes both in the heart and in cardiac fibroblasts did not demonstrate significant changes in differentially methylated regions between young and old mice. Our observations demonstrate that cardiac fibroblasts attain a stable proliferation rate and transcriptional program early in the life span of the organism and suggest that phenotypic changes in the aging heart are not directly attributable to changes in proliferation rate or altered collagen expression in cardiac fibroblasts.


Subject(s)
Fibroblasts/metabolism , Fibrosis/metabolism , Myocardium/metabolism , Age Factors , Animals , Cell Proliferation/physiology , Cells, Cultured , Collagen/genetics , Collagen/metabolism , Collagen Type I/metabolism , Extracellular Matrix/metabolism , Fibrosis/physiopathology , Gene Expression/genetics , Gene Expression Regulation/genetics , Heart , Mice , Mice, Inbred C57BL , Myocardium/pathology
16.
Reprod Sci ; 27(9): 1778-1790, 2020 09.
Article in English | MEDLINE | ID: mdl-32124398

ABSTRACT

Progesterone therapy is a viable treatment for complex atypical hyperplasia (CAH) and endometrial adenocarcinoma, though reliable molecular determinants of response are not available. To explore if analysis of pre-therapy endometrial biopsies could yield biomarkers of response to progesterone, patients with CAH or adenocarcinoma undergoing treatment with progestins were included in this cross-sectional study. Immunohistochemistry for progesterone receptor (PR) was performed. Manual PR expression scores (PRES) were first calculated for biopsies by counting PR-positive nuclei in 12 sensitive vs 9 resistant samples. Significant differences in manual PRES were detected in the stroma (p < 0.01) and total endometrium (p < 0.01) for sensitive vs resistant patients. Manual PRES in the stroma had the highest accuracy in segregating sensitive vs resistant patients (96%). Differences in epithelial PRES were not significant. To validate these findings, a correlation between manual PRES and visual PRES was performed in the 21 patients. An additional 11 patients were analyzed to test if visual PRES would be predictive of response to progesterone. Visual PRES in epithelia and stroma in the 32 specimens was calculated. Significant differences in visual PRES were detected in the stroma for sensitive vs resistant samples (p < 0.01), while differences in epithelial and total endometrium were not significant. Whole genome bisulfite sequencing was performed on DNA isolated using pre-therapy biopsies from 6 sensitive and 6 resistant patients in this cohort. Differentially methylated regions were identified in the stroma and epithelium when evaluating sensitive vs resistant samples. Pathways involved in cell adhesion demonstrated the greatest difference in methylation in these samples.


Subject(s)
DNA Methylation/drug effects , Endometrial Hyperplasia/drug therapy , Endometrium/metabolism , Progesterone/therapeutic use , Receptors, Progesterone/metabolism , Stromal Cells/metabolism , Adult , Cross-Sectional Studies , Endometrial Hyperplasia/metabolism , Endometrium/drug effects , Female , Humans , Immunohistochemistry , Progesterone/administration & dosage , Receptors, Progesterone/genetics , Stromal Cells/drug effects
17.
Cancer ; 126(8): 1668-1682, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32022261

ABSTRACT

BACKGROUND: Although curcumin's effect on head and neck cancer has been studied in vitro and in vivo, to the authors' knowledge its efficacy is limited by poor systemic absorption from oral administration. APG-157 is a botanical drug containing multiple polyphenols, including curcumin, developed under the US Food and Drug Administration's Botanical Drug Development, that delivers the active components to oromucosal tissues near the tumor target. METHODS: A double-blind, randomized, placebo-controlled, phase 1 clinical trial was conducted with APG-157 in 13 normal subjects and 12 patients with oral cancer. Two doses, 100 mg or 200 mg, were delivered transorally every hour for 3 hours. Blood and saliva were collected before and 1 hour, 2 hours, 3 hours, and 24 hours after treatment. Electrocardiograms and blood tests did not demonstrate any toxicity. RESULTS: Treatment with APG-157 resulted in circulating concentrations of curcumin and analogs peaking at 3 hours with reduced IL-1ß, IL-6, and IL-8 concentrations in the salivary supernatant fluid of patients with cancer. Salivary microbial flora analysis showed a reduction in Bacteroidetes species in cancer subjects. RNA and immunofluorescence analyses of tumor tissues of a subject demonstrated increased expression of genes associated with differentiation and T-cell recruitment to the tumor microenvironment. CONCLUSIONS: The results of the current study suggested that APG-157 could serve as a therapeutic drug in combination with immunotherapy. LAY SUMMARY: Curcumin has been shown to suppress tumor cells because of its antioxidant and anti-inflammatory properties. However, its effectiveness has been limited by poor absorption when delivered orally. Subjects with oral cancer were given oral APG-157, a botanical drug containing multiple polyphenols, including curcumin. Curcumin was found in the blood and in tumor tissues. Inflammatory markers and Bacteroides species were found to be decreased in the saliva, and immune T cells were increased in the tumor tissue. APG-157 is absorbed well, reduces inflammation, and attracts T cells to the tumor, suggesting its potential use in combination with immunotherapy drugs.


Subject(s)
Absorption, Physiological/drug effects , Antineoplastic Agents/therapeutic use , Cytokines/antagonists & inhibitors , Microbiota/drug effects , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Adult , Aged , Curcumin/therapeutic use , Cytokines/metabolism , Double-Blind Method , Female , Humans , Inflammation/metabolism , Male , Middle Aged , Polyphenols/therapeutic use , Saliva/microbiology , Tumor Microenvironment/drug effects
18.
Redox Biol ; 28: 101362, 2020 01.
Article in English | MEDLINE | ID: mdl-31675674

ABSTRACT

The purpose of this study was to investigate the effect of six months strength training with or without supplementing protein and vitamins, on chromosomal integrity of buccal cells in institutionalized elderly. One hundred seventeen women and men (65-98 years) performed either resistance training (RT), RT combined with a nutritional supplement (RTS) or cognitive training (CT) twice per week for six months. Participants' fitness was measured using the 6 min walking, the chair rise, and the handgrip strength test. Genotoxicity and cytotoxicity parameters were investigated with the Buccal Micronucleus Cytome (BMcyt) assay. Six minutes walking and chair rise performance improved significantly, however, no changes of the parameters of the BMcyt were detected. Age and micronuclei (MN) frequency correlated significantly, for both women (r = 0.597, p = 0.000) and men (r = 0.508, p = 0.000). Squared regressions revealed a significant increase in the MN frequency of buccal cells with age (R2 = 0.466, p = 0.000). Interestingly and contrary to what was shown in blood lymphocytes, chromosomal damage in buccal cells increases until very old age, which might qualify them as a valid biomarker for aging. Unexpectedly, in this group of institutionalized elderly, resistance training using elastic bands had no effect on chromosomal damage in buccal cells.


Subject(s)
Aging/physiology , Aging/psychology , Chromosomal Instability , Mouth/chemistry , Aged , Aged, 80 and over , Aging/genetics , Austria , Dietary Supplements , Female , Hand Strength , Humans , Male , Resistance Training , Walk Test
19.
Nutrients ; 11(6)2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31197107

ABSTRACT

BACKGROUND: Institutionalized elderly are at higher risk for micronutrient deficiency. In particular, fat soluble micronutrients, which additionally have antioxidative function, are of interest. The purpose of this secondary investigation of the Vienna Active Ageing Study was to assess and evaluate the plasma status of retinol, alpha- and gamma-tocopherol, alpha- and beta-carotene, lutein, zeaxanthin, beta-cryptoxanthin, and lycopene, as well as vitamin D (25(OH)D) in a cohort of institutionalized elderly. We further determined the effect of six months strength training with or without supplementing (antioxidant) vitamins and protein on the plasma status of these ten micronutrients. METHODS: Three groups (n = 117, age = 83.1 ± 6.1 years)-resistance training (RT), RT combined with protein and vitamin supplementation (RTS), or cognitive training (CT)-performed two guided training sessions per week for six months. Micronutrients were measured with High Performance Liquid Chromatography (HPLC) at baseline and after 6 months of intervention. Physical fitness was assessed by the 6-min-walking, the 30-s chair rise, isokinetic dynamometry, and the handgrip strength tests. RESULTS: At baseline, the plasma status of retinol was satisfactory, for alpha-tocopherol, beta-carotene, and 25(OH)D, the percentage of individuals with an insufficient status was 33%, 73% and 61%/81% (when using 50 nmol/L or 75 nmol/L as threshold levels for 25(OH)D), respectively. Plasma analyses were supported by intake data. Six months of elastic band resistance training with or without protein-vitamin supplementation had no biological impact on the status of fat soluble micronutrients. Even for vitamin D, which was part of the nutritional supplement (additional 20 µg/d), the plasma status did not increase significantly, however it contributed to a lower percentage of elderly below the threshold levels of 50/75 nmol/L (49%/74%). CONCLUSIONS: The findings of the study lead to the strong recommendation for regular physical activity and increased consumption of plant-based foods in institutionalized elderly. When supported by blood analysis, supplementing micronutrients in a moderate range should also be considered.


Subject(s)
Cognition/drug effects , Dietary Supplements , Micronutrients/pharmacology , Nutritional Status/drug effects , Vitamins/pharmacology , Aged , Aged, 80 and over , Austria , Dietary Proteins/pharmacology , Exercise , Female , Housing for the Elderly , Humans , Male , Micronutrients/blood , Physical Fitness , Resistance Training , Vitamins/blood
20.
Free Radic Biol Med ; 121: 69-77, 2018 06.
Article in English | MEDLINE | ID: mdl-29698742

ABSTRACT

The purpose of this study was to investigated the effect of age - over or under life-expectancy (LE) - on six months resistance training alone or combined with a nutritional supplement, and cognitive training by analyzing markers for oxidative stress and antioxidant defense in institutionalized elderly, living in Vienna. Three groups (n = 117, age = 83.1 ±â€¯6.1 years) - resistance training (RT), RT combined with protein and vitamin supplementation (RTS) or cognitive training (CT) - performed two guided training sessions per week for six months. Oxidative stress, antioxidant defense and DNA strand breaks were analyzed and transformed into an "antioxidant factor" to compare the total effect of the intervention. Physical fitness was assessed by the 6-min-walking, the chair-rise and the handgrip strength tests. We observed significant negative baseline correlations between 8-oxo-7.8-dihydroguanosine and handgrip strength (r = -0.350, p = 0.001), and between high sensitive troponin-T and the 6-min-walking test (r = -0.210, p = 0.035). RT and RTS groups, showed significant improvements in physical performance. Over LE, subjects of the RT group demonstrated a significant greater response in the "antioxidant factor" compared to RTS and CT (RT vs. RTS p = 0.033, RT vs. CT p = 0.028), whereas no difference was observed between the intervention groups under LE. Six months of elastic band resistance training lead to improvements in antioxidant defense, DNA stability and oxidative damage, summarized in the "antioxidant factor", however mainly in subjects over their statistical LE. Consuming a supplement containing antioxidants might inhibit optimal cellular response to exercise. The study was approved by the ethics committee of the City of Vienna (EK-11-151-0811) and registered at ClinicalTrials.gov, NCT01775111.


Subject(s)
Cognitive Behavioral Therapy/methods , Dietary Supplements , Exercise , Oxidative Stress , Quality of Life , Resistance Training , Aged , Aged, 80 and over , Antioxidants/administration & dosage , Female , Hand Strength , Humans , Male , Protective Factors , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...