Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
Bioconjug Chem ; 34(7): 1212-1220, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37379329

ABSTRACT

Resistance to aminoglycoside antibiotics is a serious problem, typically arising from inactivating enzymes, reduced uptake, or increased efflux in the important pathogens for which they are used as treatment. Conjugating aminoglycosides to proline-rich antimicrobial peptides (PrAMPs), which also target ribosomes and have a distinct bacterial uptake mechanism, might mutually benefit their individual activities. To this aim we have developed a strategy for noninvasively modifying tobramycin to link it to a Cys residue and through this covalently link it to a Cys-modified PrAMP by formation of a disulfide bond. Reduction of this bridge in the bacterial cytosol should release the individual antimicrobial moieties. We found that the conjugation of tobramycin to the well-characterized N-terminal PrAMP fragment Bac7(1-35) resulted in a potent antimicrobial capable of inactivating not only tobramycin-resistant bacterial strains but also those less susceptible to the PrAMP. To a certain extent, this activity also extends to the shorter and otherwise poorly active fragment Bac7(1-15). Although the mechanism that allows the conjugate to act when its individual components do not is as yet unclear, results are very promising and suggest this may be a way of resensitizing pathogens that have developed resistance to the antibiotic.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Aminoglycosides/pharmacology , Tobramycin/pharmacology , Antimicrobial Peptides , Proline , Bacteria , Microbial Sensitivity Tests
2.
Pharmaceutics ; 15(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37242675

ABSTRACT

Kiadins are in silico designed peptides with a strong similarity to diPGLa-H, a tandem sequence of PGLa-H (KIAKVALKAL) and with single, double or quadruple glycine substitutions. They were found to show high variability in their activity and selectivity against Gram-negative and Gram-positive bacteria, as well as cytotoxicity against host cells, which are influenced by the number and placing of glycine residues along the sequence. The conformational flexibility introduced by these substitutions contributes differently peptide structuring and to their interactions with the model membranes, as observed by molecular dynamics simulations. We relate these results to experimentally determined data on the structure of kiadins and their interactions with liposomes having a phospholipid membrane composition similar to simulation membrane models, as well as to their antibacterial and cytotoxic activities, and also discuss the challenges in interpreting these multiscale experiments and understanding why the presence of glycine residues in the sequence affected the antibacterial potency and toxicity towards host cells in a different manner.

3.
Trends Parasitol ; 39(5): 345-357, 2023 05.
Article in English | MEDLINE | ID: mdl-36890022

ABSTRACT

Parasitic helminths are destined to share niches with a variety of microbiota that inevitably influence their interaction with the host. To modulate the microbiome for their benefit and defend against pathogenic isolates, helminths have developed host defense peptides (HDPs) and proteins as integral elements of their immunity. These often exert a relatively nonspecific membranolytic activity toward bacteria, sometimes with limited or no toxicity toward host cells. With a few exceptions, such as nematode cecropin-like peptides and antibacterial factors (ABFs), helminthic HDPs are largely underexplored. This review scrutinizes current knowledge on the repertoire of such peptides in helminths and promotes their research as potential leads for an anti-infective solution to the burgeoning problem of antibiotic resistance.


Subject(s)
Helminths , Parasites , Animals , Antimicrobial Cationic Peptides , Bacteria
4.
Acta Biomater ; 146: 131-144, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35470073

ABSTRACT

An infecting and propagating parasite relies on its innate defense system to evade the host's immune response and to survive challenges from commensal bacteria. More so for the nematode Anisakis, a marine parasite that during its life cycle encounters both vertebrate and invertebrate hosts and their highly diverse microbiotas. Although much is still unknown about how the nematode mitigates the effects of these microbiota, its antimicrobial peptides likely play an important role in its survival. We identified anisaxins, the first cecropin-like helical antimicrobial peptides originating from a marine parasite, by mining available genomic and transcriptomic data for Anisakis spp. These peptides are potent bactericidal agents in vitro, selectively active against Gram-negative bacteria, including multi-drug resistant strains, at sub-micromolar concentrations. Their interaction with bacterial membranes was confirmed by solid state NMR (ssNMR) and is highly dependent on the peptide concentration as well as peptide to lipid ratio, as evidenced by molecular dynamics (MD) simulations. MD results indicated that an initial step in the membranolytic mode of action involves membrane bulging and lipid extraction; a novel mechanism which may underline the peptides' potency. Subsequent steps include membrane permeabilization leading to leakage of molecules and eventually cell death, but without visible macroscopic damage, as shown by atomic force microscopy and flow cytometry. This membranolytic antibacterial activity does not translate to cytotoxicity towards human peripheral blood mononuclear cells (HPBMCs), which was minimal at well above bactericidal concentrations, making anisaxins promising candidates for further drug development. STATEMENT OF SIGNIFICANCE: Witnessing the rapid spread of antibiotic resistance resulting in millions of infected and dozens of thousands dying worldwide every year, we identified anisaxins, antimicrobial peptides (AMPs) from marine parasites, Anisakis spp., with potent bactericidal activity and selectivity towards multi-drug resistant Gram-negative bacteria. Anisaxins are membrane-active peptides, whose activity, very sensitive to local peptide concentrations, involves membrane bulging and lipid extraction, leading to membrane permeabilization and bacterial cell death. At the same time, their toxicity towards host cells is negligible, which is often not the case for membrane-active AMPs, therefore making them suitable drug candidates. Membrane bulging and lipid extraction are novel concepts that broaden our understanding of peptide interactions with bacterial functional structures, essential for future design of such biomaterials.


Subject(s)
Parasites , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Peptides , Bacteria , Humans , Leukocytes, Mononuclear , Lipids/pharmacology , Microbial Sensitivity Tests
5.
Molecules ; 26(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34885985

ABSTRACT

The 3D structure and surface characteristics of proteins and peptides are crucial for interactions with receptors or ligands and can be modified to some extent to modulate their biological roles and pharmacological activities. The introduction of halogen atoms on the side-chains of amino acids is a powerful tool for effecting this type of tuning, influencing both the physico-chemical and structural properties of the modified polypeptides, helping to first dissect and then rationally modify features that affect their mode of action. This review provides examples of the influence of different types of halogenation in amino acids that replace native residues in proteins and peptides. Examples of synthetic strategies for obtaining halogenated amino acids are also provided, focusing on some representative compounds and their biological effects. The role of halogenation in native and designed antimicrobial peptides (AMPs) and their mimetics is then discussed. These are in the spotlight for the development of new antimicrobial drugs to counter the rise of antibiotic-resistant pathogens. AMPs represent an interesting model to study the role that natural halogenation has on their mode of action and also to understand how artificially halogenated residues can be used to rationally modify and optimize AMPs for pharmaceutical purposes.


Subject(s)
Anti-Bacterial Agents/chemistry , Antimicrobial Peptides/chemistry , Halogenation , Halogens/chemistry , Peptidomimetics/metabolism , Proline/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Microbial Sensitivity Tests , Peptidomimetics/chemistry , Peptoids/chemistry , Proline/chemistry , Structure-Activity Relationship
6.
Front Microbiol ; 12: 750556, 2021.
Article in English | MEDLINE | ID: mdl-34975782

ABSTRACT

Silver nanoparticles (AgNPs) and antimicrobial peptides or proteins (AMPs/APs) are both considered as promising platforms for the development of novel therapeutic agents effective against the growing number of drug-resistant pathogens. The observed synergy of their antibacterial activity suggested the prospect of introducing antimicrobial peptides or small antimicrobial proteins into the gelatinized coating of AgNPs. Conjugates with protegrin-1, indolicidin, protamine, histones, and lysozyme were comparatively tested for their antibacterial properties and compared with unconjugated nanoparticles and antimicrobial polypeptides alone. Their toxic effects were similarly tested against both normal eukaryotic cells (human erythrocytes, peripheral blood mononuclear cells, neutrophils, and dermal fibroblasts) and tumor cells (human erythromyeloid leukemia K562 and human histiocytic lymphoma U937 cell lines). The AMPs/APs retained their ability to enhance the antibacterial activity of AgNPs against both Gram-positive and Gram-negative bacteria, including drug-resistant strains, when conjugated to the AgNP surface. The small, membranolytic protegrin-1 was the most efficient, suggesting that a short, rigid structure is not a limiting factor despite the constraints imposed by binding to the nanoparticle. Some of the conjugated AMPs/APs clearly affected the ability of nanoparticle to permeabilize the outer membrane of Escherichia coli, but none of the conjugated AgNPs acquired the capacity to permeabilize its cytoplasmic membrane, regardless of the membranolytic potency of the bound polypeptide. Low hemolytic activity was also found for all AgNP-AMP/AP conjugates, regardless of the hemolytic activity of the free polypeptides, making conjugation a promising strategy not only to enhance their antimicrobial potential but also to effectively reduce the toxicity of membranolytic AMPs. The observation that metabolic processes and O2 consumption in bacteria were efficiently inhibited by all forms of AgNPs is the most likely explanation for their rapid and bactericidal action. AMP-dependent properties in the activity pattern of various conjugates toward eukaryotic cells suggest that immunomodulatory, wound-healing, and other effects of the polypeptides are at least partially transferred to the nanoparticles, so that functionalization of AgNPs may have effects beyond just modulation of direct antibacterial activity. In addition, some conjugated nanoparticles are selectively toxic to tumor cells. However, caution is required as not all modulatory effects are necessarily beneficial to normal host cells.

7.
Front Cell Infect Microbiol ; 10: 552905, 2020.
Article in English | MEDLINE | ID: mdl-33194795

ABSTRACT

Proline-rich antimicrobial peptides (PR-AMPs) having a potent antimicrobial activity predominantly toward Gram-negative bacteria and negligible toxicity toward host cells, are attracting attention as new templates for developing antibiotic drugs. We have previously isolated and characterized several bactenecins that are promising in this respect, from the leukocytes of the domestic goat Capra hircus: ChBac5, miniChBac7.5N-α, and -ß, as well as ChBac3.4. Unlike the others, ChBac3.4 shows a somewhat unusual pattern of activities for a mammalian PR-AMP: it is more active against bacterial membranes as well as tumor and, to the lesser extent, normal cells. Here we describe a SAR study of ChBac3.4 (RFRLPFRRPPIRIHPPPFYPPFRRFL-NH2) which elucidates its peculiarities and evaluates its potential as a lead for antimicrobial or anticancer drugs based on this peptide. A set of designed structural analogues of ChBac3.4 was explored for antibacterial activity toward drug-resistant clinical isolates and antitumor properties. The N-terminal region was found to be important for the antimicrobial action, but not responsible for the toxicity toward mammalian cells. A shortened variant with the best selectivity index toward bacteria demonstrated a pronounced synergy in combination with antibiotics against Gram-negative strains, albeit with a somewhat reduced ability to inhibit biofilm formation compared to native peptide. C-terminal amidation was examined for some analogues, which did not affect antimicrobial activity, but somewhat altered the cytotoxicity toward host cells. Interestingly, non-amidated peptides showed a slight delay in their impact on bacterial membrane integrity. Peptides with enhanced hydrophobicity showed increased toxicity, but in most cases their selectivity toward tumor cells also improved. While most analogues lacked hemolytic properties, a ChBac3.4 variant with two additional tryptophan residues demonstrated an appreciable activity toward human erythrocytes. The variant demonstrating the best tumor/nontumor cell selectivity was found to more actively initiate apoptosis in target cells, though its action was slower than that of the native ChBac3.4. Its antitumor effectiveness was successfully verified in vivo in a murine Ehrlich ascites carcinoma model. The obtained results demonstrate the potential of structural modification to manage caprine bactenecins' selectivity and activity spectrum and confirm that they are promising prototypes for antimicrobial and anticancer drugs design.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antineoplastic Agents/pharmacology , Goats , Mice , Microbial Sensitivity Tests , Peptides, Cyclic
8.
Int J Mol Sci ; 21(19)2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33036159

ABSTRACT

Proline-rich antimicrobial peptides (PrAMPs) may be a valuable weapon against multi-drug resistant pathogens, combining potent antimicrobial activity with low cytotoxicity. We have identified novel PrAMPs from five cetacean species (cePrAMPs), and characterized their potency, mechanism of action and in vitro cytotoxicity. Despite the homology between the N-terminal of cePrAMPs and the bovine PrAMP Bac7, some differences emerged in their sequence, activity spectrum and mode of action. CePrAMPs with the highest similarity with the Bac7(1-35) fragment inhibited bacterial protein synthesis without membrane permeabilization, while a second subgroup of cePrAMPs was more membrane-active but less efficient at inhibiting bacterial translation. Such differences may be ascribable to differences in presence and positioning of Trp residues and of a conserved motif seemingly required for translation inhibition. Unlike Bac7(1-35), which requires the peptide transporter SbmA for its uptake, the activity of cePrAMPs was mostly independent of SbmA, regardless of their mechanism of action. Two peptides displayed a promisingly broad spectrum of activity, with minimal inhibiting concentration MIC ≤ 4 µM against several bacteria of the ESKAPE group, including Pseudomonas aeruginosa and Enterococcus faecium. Our approach has led us to discover several new peptides; correlating their sequences and mechanism of action will provide useful insights for designing optimized future peptide-based antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cetacea/metabolism , Pore Forming Cytotoxic Proteins/genetics , Animals , Antimicrobial Cationic Peptides , Bacteria/drug effects , Candida albicans/drug effects , Cattle/metabolism , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/metabolism , Pore Forming Cytotoxic Proteins/pharmacology , Sequence Alignment , Sequence Analysis, Protein , Cathelicidins
9.
Dev Comp Immunol ; 105: 103574, 2020 04.
Article in English | MEDLINE | ID: mdl-31884202

ABSTRACT

This study reports the identification of four novel proline-rich antimicrobial peptides (PR-AMP) from the transcriptome of the red swamp crayfish Procambarus clarkii. The newly identified putative peptides (PcAst-1b, -1c, -2 and -3), which are related with the previously identified hemocyte-specific PR-AMP astacidin-1, are encoded by the multi-genic astacidin gene family. The screening of available and proprietary transcriptomes allowed to define the taxonomical range of distribution of this gene family to Astacoidea and Parastacoidea. The antimicrobial properties of three synthetic PcAst peptides (PcAst-1a, -1b/c and -2), were characterized against reference bacteria or multidrug resistant clinical isolates, and their cytotoxicity was evaluated towards human transformed cell lines. The antimicrobial activity ranged from potent and broad-spectrum, in low-salt medium, to poor, whereas it was generally low in full nutrient broth. No significant toxic effects were observed on cultured human cells. RNA-seq data from 12 different tissues indicated a strong specificity for haemocytes under naïve physiological condition, with moderate expression (5-fold lower) in gills. Quantitative real time PCR revealed a rapid (within 2 h) and significant up-regulation of PcAst-1a (Astacidin 1) and PcAst-2 expression in response to LPS injection. Due to the variation in antimicrobial potency and inducibility, the roles of the other astacidins (PcAst-1b, -1c and -3) need to be further investigated to determine their significance to the immune responses of the red swamp crayfish.


Subject(s)
Antimicrobial Cationic Peptides/immunology , Arthropod Proteins/immunology , Astacoidea/immunology , Epithelial Cells/physiology , Hemocytes/immunology , Lymphocytes/physiology , Peptides/immunology , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Cells, Cultured , Evolution, Molecular , Gene Expression Regulation , Humans , Immunity, Innate , Lipopolysaccharides/immunology , Peptides/genetics , Peptides/metabolism , Phylogeny , Proline/genetics , Transcriptome
10.
Int J Mol Sci ; 20(22)2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31739573

ABSTRACT

Resistance to antibiotics is one of the main current threats to human health and every year multi-drug resistant bacteria are infecting millions of people worldwide, with many dying as a result. Ever since their discovery, some 40 years ago, the antimicrobial peptides (AMPs) of innate defense have been hailed as a potential alternative to conventional antibiotics due to their relatively low potential to elicit resistance. Despite continued effort by both academia and start-ups, currently there are still no antibiotics based on AMPs in use. In this study, we discuss what we know and what we do not know about these agents, and what we need to know to successfully translate discovery to application. Understanding the complex mechanics of action of these peptides is the main prerequisite for identifying and/or designing or redesigning novel molecules with potent biological activity. However, other aspects also need to be well elucidated, i.e., the (bio)synthetic processes, physiological and pathological contexts of their activity, and a quantitative understanding of how physico-chemical properties affect activity. Research groups worldwide are using biological, biophysical, and algorithmic techniques to develop models aimed at designing molecules with the necessary blend of antimicrobial potency and low toxicity. Shedding light on some open questions may contribute toward improving this process.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Amino Acid Sequence , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/therapeutic use , Antimicrobial Cationic Peptides/biosynthesis , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/therapeutic use , Biosynthetic Pathways , Chemical Phenomena , Disease Management , Drug Design , Drug Resistance, Microbial , Humans , Hydrophobic and Hydrophilic Interactions , Quantitative Structure-Activity Relationship , Ribosomes/genetics , Ribosomes/metabolism
11.
Mar Drugs ; 17(6)2019 Jun 23.
Article in English | MEDLINE | ID: mdl-31234579

ABSTRACT

Arenicin-1, a ß-sheet antimicrobial peptide isolated from the marine polychaeta Arenicola marina coelomocytes, has a potent, broad-spectrum microbicidal activity and also shows significant toxicity towards mammalian cells. Several variants were rationally designed to elucidate the role of structural features such as cyclization, a certain symmetry of the residue arrangement, or the presence of specific residues in the sequence, in its membranolytic activity and the consequent effect on microbicidal efficacy and toxicity. The effect of variations on the structure was probed using molecular dynamics simulations, which indicated a significant stability of the ß-hairpin scaffold and showed that modifying residue symmetry and ß-strand arrangement affected both the twist and the kink present in the native structure. In vitro assays against a panel of Gram-negative and Gram-positive bacteria, including drug-resistant clinical isolates, showed that inversion of the residue arrangement improved the activity against Gram-negative strains but decreased it towards Gram-positive ones. Variants with increased symmetry were somewhat less active, whereas both backbone-cyclized and linear versions of the peptides, as well as variants with R→K and W→F replacement, showed antimicrobial activity comparable with that of the native peptide. All these variants permeabilized both the outer and the inner membranes of Escherichia coli, suggesting that a membranolytic mechanism of action was maintained. Our results indicate that the arenicin scaffold can support a considerable degree of variation while maintaining useful biological properties and can thus serve as a template for the elaboration of novel anti-infective agents.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Aquatic Organisms/chemistry , Polychaeta/chemistry , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/pharmacology , Cyclization/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests/methods
12.
Small ; 15(17): e1900323, 2019 04.
Article in English | MEDLINE | ID: mdl-30941901

ABSTRACT

Gold nanoparticles (AuNPs) covered with mixtures of immiscible ligands present potentially anisotropic surfaces that can modulate their interactions at complex nano-bio interfaces. Mixed, self-assembled, monolayer (SAM)-protected AuNPs, prepared with incompatible hydrocarbon and fluorocarbon amphiphilic ligands, are used here to probe the molecular basis of surface phase separation and disclose the role of fluorinated ligands on the interaction with lipid model membranes and cells, by integrating in silico and experimental approaches. These results indicate that the presence of fluorinated amphiphilic ligands enhances the membrane binding ability and cellular uptake of gold nanoparticles with respect to those coated only with hydrogenated amphiphilic ligands. For mixed monolayers, computational results suggest that ligand phase separation occurs on the gold surface, and the resulting anisotropy affects the number of contacts and adhesion energies with a membrane bilayer. This reflects in a diverse membrane interaction for NPs with different surface morphologies, as determined by surface plasmon resonance, as well as differential effects on cells, as observed by flow cytometry and confocal microscopy. Overall, limited changes in monolayer features can significantly affect NP surface interfacial properties, which, in turn, affect the interaction of SAM-AuNPs with cellular membranes and subsequent effects on cells.


Subject(s)
Fluorine/chemistry , Gold/chemistry , Hydrogen/chemistry , Metal Nanoparticles/chemistry , Adsorption , Anisotropy , Apoptosis , Cell Line, Tumor , Cell Membrane/chemistry , Computer Simulation , Flow Cytometry , Humans , Hydrocarbons/chemistry , Ligands , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Molecular Dynamics Simulation , Surface Plasmon Resonance , Surface Properties , Thermodynamics
13.
Biochim Biophys Acta Biomembr ; 1861(4): 827-834, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30710514

ABSTRACT

Antimicrobial peptides (AMPs) are plausible candidates for the development of novel classes of antibiotics with a low tendency to elicit resistance. They often form lesions in the bacterial membrane making it hard for bacteria to develop permanent resistance. However, a potent antibacterial activity is often accompanied by excessive cytotoxicity towards host cells. Modifying known natural sequences, based on desirable biophysical properties, is expensive and time-consuming and often with limited success. 'Mutator' is a freely available web-based computational tool for suggesting residue variations that potentially increase a peptide's selectivity, based on the use of quantitative structure activity relationship (QSAR) criteria. Although proven to be successful, it has never been used to analyze multiple sequences simultaneously. Modifying the Mutator algorithm allowed screening of many sequences in the dedicated Database of Anuran Defense Peptides (DADP) and by implementing limited amino acid substitutions on appropriate candidates, propose 8 potentially selective AMPs called Dadapins. Two were chosen for testing, confirming the prediction and validating this approach. They were shown to efficiently inactivate bacteria by disrupting their membranes but to be non-toxic for host cells, as determined by flow cytometry and confirmed by atomic force microscopy (AFM).


Subject(s)
Antimicrobial Cationic Peptides , Bacteria/growth & development , Cell Membrane , Databases, Protein , Software , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/chemistry , Cell Membrane/metabolism , Humans , Sequence Analysis, Protein , Structure-Activity Relationship
14.
Biochim Biophys Acta Biomembr ; 1861(3): 651-659, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30578771

ABSTRACT

Antimicrobial peptides (AMPs) are naturally produced, gene encoded molecules with a direct antimicrobial activity against pathogens, often also showing other immune-related properties. Anuran skin secretions are rich in bioactive peptides, including AMPs, and we have reported a novel targeted sequencing approach to identify novel AMPs simultaneously in different frog species, from small quantities of skin tissue. Over a hundred full-length peptides were identified from specimens belonging to five different Ranidae frog species, out of which 29 were novel sequences. Six of these were selected for synthesis and testing against a panel of Gram-negative and Gram-positive bacteria. One peptide, identified in Rana arvalis, proved to be a potent and broad-spectrum antimicrobial, active against ATCC bacterial strains and a multi-drug resistant clinical isolate. CD spectroscopy suggests it has a helical conformation, while surface plasmon resonance (SPR) that it may self-aggregate/oligomerize at the membrane surface. It was found to disrupt the bacterial membrane at sub-MIC, MIC and above-MIC concentrations, as observed by flow cytometry and/or visualized by atomic force microscopy (AFM). Only a limited toxicity was observed towards peripheral blood mononuclear cells (PBMC) with a more pronounced effect observed against the MEC-1 cell line.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Antimicrobial Cationic Peptides/genetics , Membranes/drug effects , Ranidae/genetics , Sequence Analysis, DNA/methods , Amino Acid Sequence , Amphibian Proteins/genetics , Amphibian Proteins/isolation & purification , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/pharmacology , Cloning, Molecular/methods , Computational Biology , Gram-Negative Bacteria/drug effects , Membranes/metabolism , Microbial Sensitivity Tests , Ranidae/metabolism , Skin/chemistry , Skin/metabolism
15.
BMC Genomics ; 19(1): 827, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30458708

ABSTRACT

BACKGROUND: Antimicrobial peptides (AMPs) are multifunctional effector molecules that often combine direct antimicrobial activities with signaling or immunomodulatory functions. The skin secretions of anurans contain a variety of such bioactive peptides. The identification of AMPs from frog species often requires sacrificing several specimens to obtain small quantities of crude peptides, followed by activity based fractionation to identify the active principles. RESULTS: We report an efficient alternative approach to selectively amplify AMP-coding transcripts from very small amounts of tissue samples, based on RNA extraction and cDNA synthesis, followed by PCR amplification and high-throughput sequencing of size-selected amplicons. This protocol exploits the highly conserved signal peptide region of the AMP precursors from Ranidae, Hylidae and Bombinatoridae for the design of family-specific, forward degenerate primers, coupled with a reverse primer targeting the mRNA poly-A tail. CONCLUSIONS: Analysis of the assembled sequencing output allowed to identify more than a hundred full-length mature peptides, mostly from Ranidae species, including several novel potential AMPs for functional characterization. This (i) confirms the effectiveness of the experimental approach and indicates points for protocol optimization to account for particular cases, and (ii) encourages the application of the same methodology to other multigenic AMP families, also from other genera, sharing common features as in anuran AMPs.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Anura/genetics , Protein Sorting Signals/genetics , Sequence Analysis, DNA/methods , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/pharmacology , Anura/classification , Base Sequence , Cell Survival/drug effects , Gene Expression Profiling , Humans , Microbial Sensitivity Tests , Monocytes/cytology , Monocytes/drug effects , Ranidae/classification , Ranidae/genetics , Sequence Homology, Nucleic Acid , Species Specificity
16.
Int J Mol Sci ; 19(6)2018 06 06.
Article in English | MEDLINE | ID: mdl-29882774

ABSTRACT

Balneotherapy is a clinically effective complementary approach in the treatment of low-grade inflammation- and stress-related pathologies. The biological mechanisms by which immersion in mineral-medicinal water and the application of mud alleviate symptoms of several pathologies are still not completely understood, but it is known that neuroendocrine and immunological responses­including both humoral and cell-mediated immunity­to balneotherapy are involved in these mechanisms of effectiveness; leading to anti-inflammatory, analgesic, antioxidant, chondroprotective, and anabolic effects together with neuroendocrine-immune regulation in different conditions. Hormesis can play a critical role in all these biological effects and mechanisms of effectiveness. The hormetic effects of balneotherapy can be related to non-specific factors such as heat­which induces the heat shock response, and therefore the synthesis and release of heat shock proteins­and also to specific biochemical components such as hydrogen sulfide (H2S) in sulfurous water and radon in radioactive water. Results from several investigations suggest that the beneficial effects of balneotherapy and hydrotherapy are consistent with the concept of hormesis, and thus support a role for hormesis in hydrothermal treatments.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Cathelicidins/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/physiology , Polysaccharides, Bacterial/chemistry , Animals , Cattle , Escherichia coli/drug effects , Escherichia coli Infections/microbiology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/chemistry , Microbial Sensitivity Tests
17.
J Med Chem ; 61(7): 2924-2936, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29553266

ABSTRACT

Antimicrobial peptides often show broad-spectrum activity due to a mechanism based on bacterial membrane disruption, which also reduces development of permanent resistance, a desirable characteristic in view of the escalating multidrug resistance problem. Host cell toxicity however requires design of artificial variants of natural AMPs to increase selectivity and reduce side effects. Kiadins were designed using rules obtained from natural peptides active against E. coli and a validated computational algorithm based on a training set of such peptides, followed by rational conformational alterations. In vitro activity, tested against ESKAPE strains (ATCC and clinical isolates), revealed a varied activity spectrum and cytotoxicity that only in part correlated with conformational flexibility. Peptides with a higher proportion of Gly were generally less potent and caused less bacterial membrane alteration, as observed by flow cytometry and AFM, which correlate to structural characteristics as observed by circular dichroism spectroscopy and predicted by molecular dynamics calculations.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/pharmacology , Glycine/chemistry , Lysine/chemistry , Algorithms , Anti-Bacterial Agents/toxicity , Antimicrobial Cationic Peptides/toxicity , Bacteria/drug effects , Bacteria/ultrastructure , Cell Membrane Permeability/drug effects , Drug Design , Hemolysis/drug effects , In Vitro Techniques , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Molecular Dynamics Simulation , Mutagenicity Tests , Structure-Activity Relationship
18.
Cell Chem Biol ; 25(5): 530-539.e7, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29526712

ABSTRACT

Proline-rich antimicrobial peptides (PrAMPs) internalize into susceptible bacteria using specific transporters and interfere with protein synthesis and folding. To date, mammalian PrAMPs have so far been identified only in artiodactyls. Since cetaceans are co-phyletic with artiodactyls, we mined the genome of the bottlenose dolphin Tursiops truncatus, leading to the identification of two PrAMPs, Tur1A and Tur1B. Tur1A, which is orthologous to the bovine PrAMP Bac7, is internalized into Escherichia coli, without damaging the membranes, using the inner membrane transporters SbmA and YjiL/MdM. Furthermore, like Bac7, Tur1A also inhibits bacterial protein synthesis by binding to the ribosome and blocking the transition from the initiation to the elongation phase. By contrast, Tur1B is a poor inhibitor of protein synthesis and may utilize another mechanism of action. An X-ray structure of Tur1A bound within the ribosomal exit tunnel provides a basis to develop these peptides as novel antimicrobial agents.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Escherichia coli/drug effects , Protein Biosynthesis/drug effects , Ribosomes/drug effects , Animals , Crystallography, X-Ray , Dolphins , Escherichia coli/metabolism , Escherichia coli Infections/drug therapy , Escherichia coli Proteins/metabolism , Humans , Models, Molecular , Ribosomes/metabolism
19.
Eur Biophys J ; 46(8): 689-690, 2017 12.
Article in English | MEDLINE | ID: mdl-29128893

Subject(s)
Biophysics
20.
Eur Biophys J ; 46(8): 749-771, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28865004

ABSTRACT

Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areas such as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns-typically patched, striped or Janus-like domains-represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology provides nanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation.


Subject(s)
Gold/chemistry , Metal Nanoparticles , Nanomedicine/methods , Gold/metabolism , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...