Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 6(6): e839, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27300265

ABSTRACT

Although monozygotic (MZ) twins share the majority of their genetic makeup, they can be phenotypically discordant on several traits and diseases. DNA methylation is an epigenetic mechanism that can be influenced by genetic, environmental and stochastic events and may have an important impact on individual variability. In this study we explored epigenetic differences in peripheral blood samples in three MZ twin studies on major depressive disorder (MDD). Epigenetic data for twin pairs were collected as part of a previous study using 8.1-K-CpG microarrays tagging DNA modification in white blood cells from MZ twins discordant for MDD. Data originated from three geographical regions: UK, Australia and the Netherlands. Ninety-seven MZ pairs (194 individuals) discordant for MDD were included. Different methods to address non independently-and-identically distributed (non-i.i.d.) data were evaluated. Machine-learning methods with feature selection centered on support vector machine and random forest were used to build a classifier to predict cases and controls based on epivariations. The most informative variants were mapped to genes and carried forward for network analysis. A mixture approach using principal component analysis (PCA) and Bayes methods allowed to combine the three studies and to leverage the increased predictive power provided by the larger sample. A machine-learning algorithm with feature reduction classified affected from non-affected twins above chance levels in an independent training-testing design. Network analysis revealed gene networks centered on the PPAR-γ (NR1C3) and C-MYC gene hubs interacting through the AP-1 (c-Jun) transcription factor. PPAR-γ (NR1C3) is a drug target for pioglitazone, which has been shown to reduce depression symptoms in patients with MDD. Using a data-driven approach we were able to overcome challenges of non-i.i.d. data when combining epigenetic studies from MZ twins discordant for MDD. Individually, the studies yielded negative results but when combined classification of the disease state from blood epigenome alone was possible. Network analysis revealed genes and gene networks that support the inflammation hypothesis of MDD.


Subject(s)
DNA Methylation/genetics , Depressive Disorder, Major/genetics , Epigenesis, Genetic/genetics , Twins, Monozygotic/genetics , Adult , CpG Islands/genetics , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/psychology , Female , Humans , Inflammation/genetics , Machine Learning , Male , Middle Aged , Models, Genetic , Oligonucleotide Array Sequence Analysis , Transcription Factors/genetics , Young Adult
2.
Transl Psychiatry ; 5: e519, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25734512

ABSTRACT

Despite moderate heritability estimates, progress in uncovering the molecular substrate underpinning major depressive disorder (MDD) has been slow. In this study, we used prefrontal cortex (PFC) gene expression from a genetic rat model of MDD to inform probe set prioritization in PFC in a human post-mortem study to uncover genes and gene pathways associated with MDD. Gene expression differences between Flinders sensitive (FSL) and Flinders resistant (FRL) rat lines were statistically evaluated using the RankProd, non-parametric algorithm. Top ranking probe sets in the rat study were subsequently used to prioritize orthologous selection in a human PFC in a case-control post-mortem study on MDD from the Stanley Brain Consortium. Candidate genes in the human post-mortem study were then tested against a matched control sample using the RankProd method. A total of 1767 probe sets were differentially expressed in the PFC between FSL and FRL rat lines at (q⩽0.001). A total of 898 orthologous probe sets was found on Affymetrix's HG-U95A chip used in the human study. Correcting for the number of multiple, non-independent tests, 20 probe sets were found to be significantly dysregulated between human cases and controls at q⩽0.05. These probe sets tagged the expression profile of 18 human genes (11 upregulated and seven downregulated). Using an integrative rat-human study, a number of convergent genes that may have a role in pathogenesis of MDD were uncovered. Eighty percent of these genes were functionally associated with a key stress response signalling cascade, involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), AP-1 (activator protein 1) and ERK/MAPK, which has been systematically associated with MDD, neuroplasticity and neurogenesis.


Subject(s)
Depressive Disorder, Major/genetics , Prefrontal Cortex , Transcriptome/genetics , Animals , Case-Control Studies , Disease Models, Animal , Humans , Rats
3.
Intelligence ; 43(100): 35-46, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24696527

ABSTRACT

Basic intellectual abilities of quantity and numerosity estimation have been detected across animal species. Such abilities are referred to as 'number sense'. For human species, individual differences in number sense are detectable early in life, persist in later development, and relate to general intelligence. The origins of these individual differences are unknown. To address this question, we conducted the first large-scale genetically sensitive investigation of number sense, assessing numerosity discrimination abilities in 837 pairs of monozygotic and 1422 pairs of dizygotic 16-year-old twin pairs. Univariate genetic analysis of the twin data revealed that number sense is modestly heritable (32%), with individual differences being largely explained by non-shared environmental influences (68%) and no contribution from shared environmental factors. Sex-Limitation model fitting revealed no differences between males and females in the etiology of individual differences in number sense abilities. We also carried out Genome-wide Complex Trait Analysis (GCTA) that estimates the population variance explained by additive effects of DNA differences among unrelated individuals. For 1118 unrelated individuals in our sample with genotyping information on 1.7 million DNA markers, GCTA estimated zero heritability for number sense, unlike other cognitive abilities in the same twin study where the GCTA heritability estimates were about 25%. The low heritability of number sense, observed in this study, is consistent with the directional selection explanation whereby additive genetic variance for evolutionary important traits is reduced.

SELECTION OF CITATIONS
SEARCH DETAIL