Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Alzheimers Dement ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770829

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) pathology is defined by ß-amyloid (Aß) plaques and neurofibrillary tau, but Lewy bodies (LBs; 𝛼-synuclein aggregates) are a common co-pathology for which effective biomarkers are needed. METHODS: A validated α-synuclein Seed Amplification Assay (SAA) was used on recent cerebrospinal fluid (CSF) samples from 1638 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants, 78 with LB-pathology confirmation at autopsy. We compared SAA outcomes with neuropathology, Aß and tau biomarkers, risk-factors, genetics, and cognitive trajectories. RESULTS: SAA showed 79% sensitivity and 97% specificity for LB pathology, with superior performance in identifying neocortical (100%) compared to limbic (57%) and amygdala-predominant (60%) LB-pathology. SAA+ rate was 22%, increasing with disease stage and age. Higher Aß burden but lower CSF p-tau181 associated with higher SAA+ rates, especially in dementia. SAA+ affected cognitive impairment in MCI and Early-AD who were already AD biomarker positive. DISCUSSION: SAA is a sensitive, specific marker for LB-pathology. Its increase in prevalence with age and AD stages, and its association with AD biomarkers, highlights the clinical importance of α-synuclein co-pathology in understanding AD's nature and progression. HIGHLIGHTS: SAA shows 79% sensitivity, 97% specificity for LB-pathology detection in AD. SAA positivity prevalence increases with disease stage and age. Higher Aß burden, lower CSF p-tau181 linked with higher SAA+ rates in dementia. SAA+ impacts cognitive impairment in early disease stages. Study underpins need for wider LB-pathology screening in AD treatment.

2.
J Magn Reson Imaging ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400805

ABSTRACT

BACKGROUND: Arterial spin labeling (ASL) derived cerebral blood flow (CBF) maps are prone to artifacts and noise that can degrade image quality. PURPOSE: To develop an automated and objective quality evaluation index (QEI) for ASL CBF maps. STUDY TYPE: Retrospective. POPULATION: Data from N = 221 adults, including patients with Alzheimer's disease (AD), Parkinson's disease, and traumatic brain injury. FIELD STRENGTH/SEQUENCE: Pulsed or pseudocontinuous ASL acquired at 3 T using non-background suppressed 2D gradient-echo echoplanar imaging or background suppressed 3D spiral spin-echo readouts. ASSESSMENT: The QEI was developed using N = 101 2D CBF maps rated as unacceptable, poor, average, or excellent by two neuroradiologists and validated by 1) leave-one-out cross validation, 2) assessing if CBF reproducibility in N = 53 cognitively normal adults correlates inversely with QEI, 3) if iterative discarding of low QEI data improves the Cohen's d effect size for CBF differences between preclinical AD (N = 27) and controls (N = 53), 4) comparing the QEI with manual ratings for N = 50 3D CBF maps, and 5) comparing the QEI with another automated quality metric. STATISTICAL TESTS: Inter-rater reliability and manual vs. automated QEI were quantified using Pearson's correlation. P < 0.05 was considered significant. RESULTS: The correlation between QEI and manual ratings (R = 0.83, CI: 0.76-0.88) was similar (P = 0.56) to inter-rater correlation (R = 0.81, CI: 0.73-0.87) for the 2D data. CBF reproducibility correlated negatively (R = -0.74, CI: -0.84 to -0.59) with QEI. The effect size comparing patients and controls improved (R = 0.72, CI: 0.59-0.82) as low QEI data was discarded iteratively. The correlation between QEI and manual ratings (R = 0.86, CI: 0.77-0.92) of 3D ASL was similar (P = 0.09) to inter-rater correlation (R = 0.78, CI: 0.64-0.87). The QEI correlated (R = 0.87, CI: 0.77-0.92) significantly better with manual ratings than did an existing approach (R = 0.54, CI: 0.30-0.72). DATA CONCLUSION: Automated QEI performed similarly to manual ratings and can provide scalable ASL quality control. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

3.
JAMA Psychiatry ; 81(5): 456-467, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353984

ABSTRACT

Importance: Brain aging elicits complex neuroanatomical changes influenced by multiple age-related pathologies. Understanding the heterogeneity of structural brain changes in aging may provide insights into preclinical stages of neurodegenerative diseases. Objective: To derive subgroups with common patterns of variation in participants without diagnosed cognitive impairment (WODCI) in a data-driven manner and relate them to genetics, biomedical measures, and cognitive decline trajectories. Design, Setting, and Participants: Data acquisition for this cohort study was performed from 1999 to 2020. Data consolidation and harmonization were conducted from July 2017 to July 2021. Age-specific subgroups of structural brain measures were modeled in 4 decade-long intervals spanning ages 45 to 85 years using a deep learning, semisupervised clustering method leveraging generative adversarial networks. Data were analyzed from July 2021 to February 2023 and were drawn from the Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) international consortium. Individuals WODCI at baseline spanning ages 45 to 85 years were included, with greater than 50 000 data time points. Exposures: Individuals WODCI at baseline scan. Main Outcomes and Measures: Three subgroups, consistent across decades, were identified within the WODCI population. Associations with genetics, cardiovascular risk factors (CVRFs), amyloid ß (Aß), and future cognitive decline were assessed. Results: In a sample of 27 402 individuals (mean [SD] age, 63.0 [8.3] years; 15 146 female [55%]) WODCI, 3 subgroups were identified in contrast with the reference group: a typical aging subgroup, A1, with a specific pattern of modest atrophy and white matter hyperintensity (WMH) load, and 2 accelerated aging subgroups, A2 and A3, with characteristics that were more distinct at age 65 years and older. A2 was associated with hypertension, WMH, and vascular disease-related genetic variants and was enriched for Aß positivity (ages ≥65 years) and apolipoprotein E (APOE) ε4 carriers. A3 showed severe, widespread atrophy, moderate presence of CVRFs, and greater cognitive decline. Genetic variants associated with A1 were protective for WMH (rs7209235: mean [SD] B = -0.07 [0.01]; P value = 2.31 × 10-9) and Alzheimer disease (rs72932727: mean [SD] B = 0.1 [0.02]; P value = 6.49 × 10-9), whereas the converse was observed for A2 (rs7209235: mean [SD] B = 0.1 [0.01]; P value = 1.73 × 10-15 and rs72932727: mean [SD] B = -0.09 [0.02]; P value = 4.05 × 10-7, respectively); variants in A3 were associated with regional atrophy (rs167684: mean [SD] B = 0.08 [0.01]; P value = 7.22 × 10-12) and white matter integrity measures (rs1636250: mean [SD] B = 0.06 [0.01]; P value = 4.90 × 10-7). Conclusions and Relevance: The 3 subgroups showed distinct associations with CVRFs, genetics, and subsequent cognitive decline. These subgroups likely reflect multiple underlying neuropathologic processes and affect susceptibility to Alzheimer disease, paving pathways toward patient stratification at early asymptomatic stages and promoting precision medicine in clinical trials and health care.


Subject(s)
Aging , Brain , Humans , Aged , Female , Male , Middle Aged , Aged, 80 and over , Brain/diagnostic imaging , Brain/pathology , Aging/genetics , Aging/physiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging , Cohort Studies , Deep Learning
4.
Int Psychogeriatr ; : 1-12, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38268483

ABSTRACT

OBJECTIVES: Late-life depression (LLD) is common and frequently co-occurs with neurodegenerative diseases of aging. Little is known about how heterogeneity within LLD relates to factors typically associated with neurodegeneration. Varying levels of anxiety are one source of heterogeneity in LLD. We examined associations between anxiety symptom severity and factors associated with neurodegeneration, including regional brain volumes, amyloid beta (Aß) deposition, white matter disease, cognitive dysfunction, and functional ability in LLD. PARTICIPANTS AND MEASUREMENTS: Older adults with major depression (N = 121, Ages 65-91) were evaluated for anxiety severity and the following: brain volume (orbitofrontal cortex [OFC], insula), cortical Aß standardized uptake value ratio (SUVR), white matter hyperintensity (WMH) volume, global cognition, and functional ability. Separate linear regression analyses adjusting for age, sex, and concurrent depression severity were conducted to examine associations between anxiety and each of these factors. A global regression analysis was then conducted to examine the relative associations of these variables with anxiety severity. RESULTS: Greater anxiety severity was associated with lower OFC volume (ß = -68.25, t = -2.18, p = .031) and greater cognitive dysfunction (ß = 0.23, t = 2.46, p = .016). Anxiety severity was not associated with insula volume, Aß SUVR, WMH, or functional ability. When examining the relative associations of cognitive functioning and OFC volume with anxiety in a global model, cognitive dysfunction (ß = 0.24, t = 2.62, p = .010), but not OFC volume, remained significantly associated with anxiety. CONCLUSIONS: Among multiple factors typically associated with neurodegeneration, cognitive dysfunction stands out as a key factor associated with anxiety severity in LLD which has implications for cognitive and psychiatric interventions.

5.
Alzheimers Dement ; 20(3): 2113-2127, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38241084

ABSTRACT

INTRODUCTION: Abnormal amyloid-beta (Aß) and tau deposition define Alzheimer's Disease (AD), but non-elevated tau is relatively frequent in patients on the AD pathway. METHODS: We examined characteristics and regional patterns of 397 Aß+ unimpaired and impaired individuals with low tau (A+T-) in relation to their higher tau counterparts (A+T+). RESULTS: Seventy-one percent of Aß+ unimpaired and 42% of impaired Aß+ individuals were categorized as A+T- based on global tau. In impaired individuals only, A+T- status was associated with older age, male sex, and greater cardiovascular risk. α-synuclein was linked to poorer cognition, particularly when tau was low. Tau burden was most frequently elevated in a common set of temporal regions regardless of T+/T- status. DISCUSSION: Low tau is relatively common in patients on the AD pathway and is linked to comorbidities that contribute to impairment. These findings have implications for the selection of individuals for Aß- and tau-modifying therapies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Male , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cognition , Positron-Emission Tomography , tau Proteins/metabolism , Female
6.
Am J Geriatr Psychiatry ; 32(2): 137-147, 2024 02.
Article in English | MEDLINE | ID: mdl-37770349

ABSTRACT

OBJECTIVES: Late life depression (LLD) and hoarding disorder (HD) are common in older adults and characterized by executive dysfunction and disability. We aimed to determine the frequency of co-occurring HD in LLD and examine hoarding severity as an additional contributor to executive dysfunction, disability, and response to psychotherapy for LLD. DESIGN: Cross-sectional. SETTING: Outpatient psychiatry program. PARTICIPANTS: Eighty-three community-dwelling adults ages 65-90 with LLD. INTERVENTION: Problem-solving therapy. MEASUREMENTS: Measures of executive function, disability, depression, and hoarding severity were completed at post-treatment. Pearson's chi-squared tests evaluated group differences in rates of cognitive impairment, disability, and depression treatment response between participants with HD (LLD+HD) and LLD only. Separate linear regressions assessed associations between hoarding severity and executive function, disability, and psychotherapy response. Covariates included age, education, gender, and depression severity. RESULTS: 30.1% (25/83) of LLD participants met HD criteria. Relative to LLD, LLD+HD participants demonstrated greater impairment rates on measures of executive function (Letter-Number-Sequencing, X2(1)=4.0, p = 0.045; Stroop-Interference, X2(1) = 4.8, p = 0.028). Greater hoarding severity was associated with poorer executive functioning performance (Letter-Number-Sequencing (t[70] = -2.1, ß = -0.05, p = 0.044), Digit-Span (t[71] = -2.4, ß = -0.07, p = 0.019), Letter-Fluency (t[ 71] = -2.8, ß = -0.24, p = 0.006)). Rates of disability were significantly higher for LLD+HD (88.0%) than LLD (62.3%), (X2[1] = 5.41, p = 0.020) and higher hoarding severity was related to greater disability (t[72] = 2.97, ß = 0.13, p = 0.004). Depression treatment response rates were significantly lower for LLD+HD (24.0%) compared to LLD (48.3%), X2(1) = 4.26, p = 0.039, and HD status predicted psychotherapy response, t(67) = -2.15, ß = -15.6, p = 0.035. CONCLUSIONS: We found 30.1% co-occurrence of HD in LLD, which was accompanied by greater executive dysfunction, disability, and poorer response to depression treatment. Results underscore the need for increased screening of hoarding behaviors in LLD and tailored interventions for this LLD+HD group.


Subject(s)
Cognitive Dysfunction , Hoarding Disorder , Hoarding , Humans , Aged , Depression/complications , Depression/epidemiology , Depression/therapy , Cross-Sectional Studies , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/therapy , Compulsive Behavior , Hoarding Disorder/therapy , Hoarding Disorder/psychology
7.
Neuroimage ; 285: 120494, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38086495

ABSTRACT

White matter hyperintensities (WMH) are nearly ubiquitous in the aging brain, and their topography and overall burden are associated with cognitive decline. Given their numerosity, accurate methods to automatically segment WMH are needed. Recent developments, including the availability of challenge data sets and improved deep learning algorithms, have led to a new promising deep-learning based automated segmentation model called TrUE-Net, which has yet to undergo rigorous independent validation. Here, we compare TrUE-Net to six established automated WMH segmentation tools, including a semi-manual method. We evaluated the techniques at both global and regional level to compare their ability to detect the established relationship between WMH burden and age. We found that TrUE-Net was highly reliable at identifying WMH regions with low false positive rates, when compared to semi-manual segmentation as the reference standard. TrUE-Net performed similarly or favorably when compared to the other automated techniques. Moreover, TrUE-Net was able to detect relationships between WMH and age to a similar degree as the reference standard semi-manual segmentation at both the global and regional level. These results support the use of TrUE-Net for identifying WMH at the global or regional level, including in large, combined datasets.


Subject(s)
Leukoaraiosis , White Matter , Humans , White Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Algorithms , Aging
8.
Am J Geriatr Psychiatry ; 32(4): 497-508, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38092621

ABSTRACT

Hoarding disorder (HD) is a debilitating neuropsychiatric condition that affects 2%-6% of the population and increases in incidence with age. Major depressive disorder (MDD) co-occurs with HD in approximately 50% of cases and leads to increased functional impairment and disability. However, only one study to date has examined the rate and trajectory of hoarding symptoms in older individuals with a lifetime history of MDD, including those with current active depression (late-life depression; LLD). We therefore sought to characterize this potentially distinct phenotype. We determined the incidence of HD in two separate cohorts of participants with LLD (n = 73) or lifetime history of MDD (n = 580) and examined the reliability and stability of hoarding symptoms using the Saving Inventory-Revised (SI-R) and Hoarding Rating Scale-Self Report (HRS), as well as the co-variance of hoarding and depression scores over time. HD was present in 12% to 33% of participants with MDD, with higher rates found in those with active depressive symptoms. Hoarding severity was stable across timepoints in both samples (all correlations >0.75), and fewer than 30% of participants in each sample experienced significant changes in severity between any two timepoints. Change in depression symptoms over time did not co-vary with change in hoarding symptoms. These findings indicate that hoarding is a more common comorbidity in LLD than previously suggested, and should be considered in screening and management of LLD. Future studies should further characterize the interaction of these conditions and their impact on outcomes, particularly functional impairment in this vulnerable population.


Subject(s)
Depressive Disorder, Major , Hoarding Disorder , Hoarding , Humans , Aged , Depression/psychology , Depressive Disorder, Major/epidemiology , Hoarding/epidemiology , Reproducibility of Results , Compulsive Behavior , Hoarding Disorder/diagnosis
9.
Alzheimers Dement ; 20(1): 421-436, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37667412

ABSTRACT

INTRODUCTION: Biomarkers remain mostly unavailable for non-Alzheimer's disease neuropathological changes (non-ADNC) such as transactive response DNA-binding protein 43 (TDP-43) proteinopathy, Lewy body disease (LBD), and cerebral amyloid angiopathy (CAA). METHODS: A multilabel non-ADNC classifier using magnetic resonance imaging (MRI) signatures was developed for TDP-43, LBD, and CAA in an autopsy-confirmed cohort (N = 214). RESULTS: A model using demographic, genetic, clinical, MRI, and ADNC variables (amyloid positive [Aß+] and tau+) in autopsy-confirmed participants showed accuracies of 84% for TDP-43, 81% for LBD, and 81% to 93% for CAA, outperforming reference models without MRI and ADNC biomarkers. In an ADNI cohort (296 cognitively unimpaired, 401 mild cognitive impairment, 188 dementia), Aß and tau explained 33% to 43% of variance in cognitive decline; imputed non-ADNC explained an additional 16% to 26%. Accounting for non-ADNC decreased the required sample size to detect a 30% effect on cognitive decline by up to 28%. DISCUSSION: Our results lead to a better understanding of the factors that influence cognitive decline and may lead to improvements in AD clinical trial design.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Lewy Body Disease , Humans , Alzheimer Disease/pathology , Precision Medicine , Lewy Body Disease/pathology , DNA-Binding Proteins/metabolism , Biomarkers
10.
Alzheimers Dement ; 20(1): 652-694, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37698424

ABSTRACT

The Alzheimer's Disease Neuroimaging Initiative (ADNI) aims to improve Alzheimer's disease (AD) clinical trials. Since 2006, ADNI has shared clinical, neuroimaging, and cognitive data, and biofluid samples. We used conventional search methods to identify 1459 publications from 2021 to 2022 using ADNI data/samples and reviewed 291 impactful studies. This review details how ADNI studies improved disease progression understanding and clinical trial efficiency. Advances in subject selection, detection of treatment effects, harmonization, and modeling improved clinical trials and plasma biomarkers like phosphorylated tau showed promise for clinical use. Biomarkers of amyloid beta, tau, neurodegeneration, inflammation, and others were prognostic with individualized prediction algorithms available online. Studies supported the amyloid cascade, emphasized the importance of neuroinflammation, and detailed widespread heterogeneity in disease, linked to genetic and vascular risk, co-pathologies, sex, and resilience. Biological subtypes were consistently observed. Generalizability of ADNI results is limited by lack of cohort diversity, an issue ADNI-4 aims to address by enrolling a diverse cohort.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/therapy , Amyloid beta-Peptides , Neuroimaging/methods , Biomarkers , Disease Progression , tau Proteins , Cognitive Dysfunction/diagnostic imaging
11.
EBioMedicine ; 99: 104923, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101301

ABSTRACT

BACKGROUND: Tau pathology correlates with and predicts clinical decline in Alzheimer's disease. Approved tau-targeted therapies are not available. METHODS: ADAMANT, a 24-month randomised, placebo-controlled, parallel-group, double-blinded, multicenter, Phase 2 clinical trial (EudraCT2015-000630-30, NCT02579252) enrolled 196 participants with Alzheimer's disease; 119 are included in this post-hoc subgroup analysis. AADvac1, active immunotherapy against pathological tau protein. A machine learning model predicted likely Amyloid+Tau+ participants from baseline MRI. STATISTICAL METHODS: MMRM for change from baseline in cognition, function, and neurodegeneration; linear regression for associations between antibody response and endpoints. RESULTS: The prediction model achieved PPV of 97.7% for amyloid, 96.2% for tau. 119 participants in the full analysis set (70 treatment and 49 placebo) were classified as A+T+. A trend for CDR-SB 104-week change (estimated marginal means [emm] = -0.99 points, 95% CI [-2.13, 0.13], p = 0.0825]) and ADCS-MCI-ADL (emm = 3.82 points, CI [-0.29, 7.92], p = 0.0679) in favour of the treatment group was seen. Reduction was seen in plasma NF-L (emm = -0.15 log pg/mL, CI [-0.27, -0.03], p = 0.0139). Higher antibody response to AADvac1 was related to slowing of decline on CDR-SB (rho = -0.10, CI [-0.21, 0.01], p = 0.0376) and ADL (rho = 0.15, CI [0.03, 0.27], p = 0.0201), and related to slower brain atrophy (rho = 0.18-0.35, p < 0.05 for temporal volume, whole cortex, and right and left hippocampus). CONCLUSIONS: In the subgroup of ML imputed or CSF identified A+T+, AADvac1 slowed AD-related decline in an antibody-dependent manner. Larger anti-tau trials are warranted. FUNDING: AXON Neuroscience SE.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , tau Proteins , Amyloid beta-Peptides , Immunotherapy , Immunotherapy, Active , Biomarkers
12.
Proc Natl Acad Sci U S A ; 120(52): e2300842120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38127979

ABSTRACT

Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/pathology , Brain Mapping/methods , Genomics , Brain Neoplasms/pathology
13.
medRxiv ; 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37398392

ABSTRACT

INTRODUCTION: Neuroanatomical normative modelling can capture individual variability in Alzheimer's Disease (AD). We used neuroanatomical normative modelling to track individuals' disease progression in people with mild cognitive impairment (MCI) and patients with AD. METHODS: Cortical thickness and subcortical volume neuroanatomical normative models were generated using healthy controls (n~58k). These models were used to calculate regional Z-scores in 4361 T1-weighted MRI time-series scans. Regions with Z-scores <-1.96 were classified as outliers and mapped on the brain, and also summarised by total outlier count (tOC). RESULTS: Rate of change in tOC increased in AD and in people with MCI who converted to AD and correlated with multiple non-imaging markers. Moreover, a higher annual rate of change in tOC increased the risk of MCI progression to AD. Brain Z-score maps showed that the hippocampus had the highest rate of atrophy change. CONCLUSIONS: Individual-level atrophy rates can be tracked by using regional outlier maps and tOC.

14.
Alzheimers Dement (Amst) ; 15(3): e12457, 2023.
Article in English | MEDLINE | ID: mdl-37492802

ABSTRACT

INTRODUCTION: The Centiloid (CL) project was developed to harmonize the quantification of amyloid beta (Aß) positron emission tomography (PET) scans to a unified scale. The CL neocortical mask was defined using 11C Pittsburgh compound B (PiB), overlooking potential differences in regional distribution among Aß tracers. We created a universal mask using an independent dataset of five Aß tracers, and investigated its impact on inter-tracer agreement, tracer variability, and group separation. METHODS: Using data from the Alzheimer's Dementia Onset and Progression in International Cohorts (ADOPIC) study (Australian Imaging Biomarkers and Lifestyle + Alzheimer's Disease Neuroimaging Initiative + Open Access Series of Imaging Studies), age-matched pairs of mild Alzheimer's disease (AD) and healthy controls (HC) were selected: 18F-florbetapir (N = 147 pairs), 18F-florbetaben (N = 22), 18F-flutemetamol (N = 10), 18F-NAV (N = 42), 11C-PiB (N = 63). The images were spatially and standardized uptake value ratio normalized. For each tracer, the mean AD-HC difference image was thresholded to maximize the overlap with the standard neocortical mask. The universal mask was defined as the intersection of all five masks. It was evaluated on the Global Alzheimer's Association Interactive Network (GAAIN) head-to-head datasets in terms of inter-tracer agreement and variance in the young controls (YC) and on the ADOPIC dataset comparing separation between HC/AD and HC/mild cognitive impairment (MCI). RESULTS: In the GAAIN dataset, the universal mask led to a small reduction in the variance of the YC, and a small increase in the inter-tracer agreement. In the ADOPIC dataset, it led to a better separation between HC/AD and HC/MCI at baseline. DISCUSSION: The universal CL mask led to an increase in inter-tracer agreement and group separation. Those increases were, however, very small, and do not provide sufficient benefits to support departing from the existing standard CL mask, which is suitable for the quantification of all Aß tracers. HIGHLIGHTS: This study built an amyloid universal mask using a matched cohort for the five most commonly used amyloid positron emission tomography tracers.There was a high overlap between each tracer-specific mask.Differences in quantification and group separation between the standard and universal mask were small.The existing standard Centiloid mask is suitable for the quantification of all amyloid beta tracers.

15.
Alzheimers Dement ; 19(12): 5605-5619, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37288753

ABSTRACT

INTRODUCTION: How to detect patterns of greater tau burden and accumulation is still an open question. METHODS: An unsupervised data-driven whole-brain pattern analysis of longitudinal tau positron emission tomography (PET) was used first to identify distinct tau accumulation profiles and then to build baseline models predictive of tau-accumulation type. RESULTS: The data-driven analysis of longitudinal flortaucipir PET from studies done by the Alzheimer's Disease Neuroimaging Initiative, Avid Pharmaceuticals, and Harvard Aging Brain Study (N = 348 cognitively unimpaired, N = 188 mild cognitive impairment, N = 77 dementia), yielded three distinct flortaucipir-progression profiles: stable, moderate accumulator, and fast accumulator. Baseline flortaucipir levels, amyloid beta (Aß) positivity, and clinical variables, identified moderate and fast accumulators with 81% and 95% positive predictive values, respectively. Screening for fast tau accumulation and Aß positivity in early Alzheimer's disease, compared to Aß positivity with variable tau progression profiles, required 46% to 77% lower sample size to achieve 80% power for 30% slowing of clinical decline. DISCUSSION: Predicting tau progression with baseline imaging and clinical markers could allow screening of high-risk individuals most likely to benefit from a specific treatment regimen.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , tau Proteins , Positron-Emission Tomography/methods , Cognitive Dysfunction/diagnostic imaging
16.
Neurology ; 100(24): e2442-e2453, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37127353

ABSTRACT

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) is highly heterogeneous, with marked individual differences in clinical presentation and neurobiology. To explore this, we used neuroanatomical normative modeling to index regional patterns of variability in cortical thickness. We aimed to characterize individual differences and outliers in cortical thickness in patients with AD, people with mild cognitive impairment (MCI), and controls. Furthermore, we assessed the relationships between cortical thickness heterogeneity and cognitive function, ß-amyloid, phosphorylated-tau, and ApoE genotype. Finally, we examined whether cortical thickness heterogeneity was predictive of conversion from MCI to AD. METHODS: Cortical thickness measurements across 148 brain regions were obtained from T1-weighted MRI scans from 62 sites of the Alzheimer's Disease Neuroimaging Initiative. AD was determined by clinical and neuropsychological examination with no comorbidities present. Participants with MCI had reported memory complaints, and controls were cognitively normal. A neuroanatomical normative model indexed cortical thickness distributions using a separate healthy reference data set (n = 33,072), which used hierarchical Bayesian regression to predict cortical thickness per region using age and sex, while adjusting for site noise. Z-scores per region were calculated, resulting in a Z-score brain map per participant. Regions with Z-scores <-1.96 were classified as outliers. RESULTS: Patients with AD (n = 206) had a median of 12 outlier regions (out of a possible 148), with the highest proportion of outliers (47%) in the parahippocampal gyrus. For 62 regions, over 90% of these patients had cortical thicknesses within the normal range. Patients with AD had more outlier regions than people with MCI (n = 662) or controls (n = 159) (F(2, 1,022) = 95.39, p = 2.0 × 10-16). They were also more dissimilar to each other than people with MCI or controls (F(2, 1,024) = 209.42, p = 2.2 × 10-16). A greater number of outlier regions were associated with worse cognitive function, CSF protein concentrations, and an increased risk of converting from MCI to AD within 3 years (hazard ratio 1.028, 95% CI 1.016-1.039, p = 1.8 × 10-16). DISCUSSION: Individualized normative maps of cortical thickness highlight the heterogeneous effect of AD on the brain. Regional outlier estimates have the potential to be a marker of disease and could be used to track an individual's disease progression or treatment response in clinical trials.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/metabolism , Bayes Theorem , Amyloid beta-Peptides/metabolism , Neuroimaging , Cognitive Dysfunction/metabolism , Brain/metabolism , Magnetic Resonance Imaging
17.
BMC Psychiatry ; 23(1): 59, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36690972

ABSTRACT

BACKGROUND: Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states. METHODS: We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD). Utilizing imaging harmonization and machine learning methods in a large cohort of medication-free, deeply phenotyped MDD participants, patterns of brain alteration are defined in replicable and neurobiologically-based dimensions and offer the potential to predict treatment response at the individual level. International datasets are being shared from multi-ethnic community populations, first episode and recurrent MDD, which are medication-free, in a current depressive episode with prospective longitudinal treatment outcomes and in remission. Neuroimaging data consist of de-identified, individual, structural MRI and resting-state functional MRI with additional positron emission tomography (PET) data at specific sites. State-of-the-art analytic methods include automated image processing for extraction of anatomical and functional imaging variables, statistical harmonization of imaging variables to account for site and scanner variations, and semi-supervised machine learning methods that identify dominant patterns associated with MDD from neural structure and function in healthy participants. RESULTS: We are applying an iterative process by defining the neural dimensions that characterise deeply phenotyped samples and then testing the dimensions in novel samples to assess specificity and reliability. Crucially, we aim to use machine learning methods to identify novel predictors of treatment response based on prospective longitudinal treatment outcome data, and we can externally validate the dimensions in fully independent sites. CONCLUSION: We describe the consortium, imaging protocols and analytics using preliminary results. Our findings thus far demonstrate how datasets across many sites can be harmonized and constructively pooled to enable execution of this large-scale project.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnosis , Prospective Studies , Reproducibility of Results , Brain , Neuroimaging , Magnetic Resonance Imaging/methods , Artificial Intelligence
18.
Pain Med ; 24(Suppl 1): S81-S94, 2023 08 04.
Article in English | MEDLINE | ID: mdl-36069660

ABSTRACT

Management of patients suffering from low back pain (LBP) is challenging and requires development of diagnostic techniques to identify specific patient subgroups and phenotypes in order to customize treatment and predict clinical outcome. The Back Pain Consortium (BACPAC) Research Program Spine Imaging Working Group has developed standard operating procedures (SOPs) for spinal imaging protocols to be used in all BACPAC studies. These SOPs include procedures to conduct spinal imaging assessments with guidelines for standardizing the collection, reading/grading (using structured reporting with semi-quantitative evaluation using ordinal rating scales), and storage of images. This article presents the approach to image acquisition and evaluation recommended by the BACPAC Spine Imaging Working Group. While the approach is specific to BACPAC studies, it is general enough to be applied at other centers performing magnetic resonance imaging (MRI) acquisitions in patients with LBP. The herein presented SOPs are meant to improve understanding of pain mechanisms and facilitate patient phenotyping by codifying MRI-based methods that provide standardized, non-invasive assessments of spinal pathologies. Finally, these recommended procedures may facilitate the integration of better harmonized MRI data of the lumbar spine across studies and sites within and outside of BACPAC studies.


Subject(s)
Intervertebral Disc Degeneration , Low Back Pain , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/pathology , Lumbosacral Region , Low Back Pain/diagnostic imaging , Magnetic Resonance Imaging/methods
19.
Alzheimers Dement ; 19(1): 307-317, 2023 01.
Article in English | MEDLINE | ID: mdl-36209495

ABSTRACT

INTRODUCTION: The Alzheimer's Disease Neuroimaging Initiative (ADNI) aims to validate biomarkers for Alzheimer's disease (AD) clinical trials. To improve generalizability, ADNI4 aims to enroll 50-60% of its new participants from underrepresented populations (URPs) using new biofluid and digital technologies. ADNI4 has received funding from the National Institute on Aging beginning September 2022. METHODS: ADNI4 will recruit URPs using community-engaged approaches. An online portal will screen 20,000 participants, 4000 of whom (50-60% URPs) will be tested for plasma biomarkers and APOE. From this, 500 new participants will undergo in-clinic assessment joining 500 ADNI3 rollover participants. Remaining participants (∼3500) will undergo longitudinal plasma and digital cognitive testing. ADNI4 will add MRI sequences and new PET tracers. Project 1 will optimize biomarkers in AD clinical trials. RESULTS AND DISCUSSION: ADNI4 will improve generalizability of results, use remote digital and blood screening, and continue providing longitudinal clinical, biomarker, and autopsy data to investigators.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Community Participation , Stakeholder Participation , Neuroimaging/methods , Biomarkers , Cognitive Dysfunction/diagnostic imaging , Amyloid beta-Peptides
20.
medRxiv ; 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38234857

ABSTRACT

Brain aging is a complex process influenced by various lifestyle, environmental, and genetic factors, as well as by age-related and often co-existing pathologies. MRI and, more recently, AI methods have been instrumental in understanding the neuroanatomical changes that occur during aging in large and diverse populations. However, the multiplicity and mutual overlap of both pathologic processes and affected brain regions make it difficult to precisely characterize the underlying neurodegenerative profile of an individual from an MRI scan. Herein, we leverage a state-of-the art deep representation learning method, Surreal-GAN, and present both methodological advances and extensive experimental results that allow us to elucidate the heterogeneity of brain aging in a large and diverse cohort of 49,482 individuals from 11 studies. Five dominant patterns of neurodegeneration were identified and quantified for each individual by their respective (herein referred to as) R-indices. Significant associations between R-indices and distinct biomedical, lifestyle, and genetic factors provide insights into the etiology of observed variances. Furthermore, baseline R-indices showed predictive value for disease progression and mortality. These five R-indices contribute to MRI-based precision diagnostics, prognostication, and may inform stratification into clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...