Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 385: 49-57, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38442841

ABSTRACT

The transient receptor potential melastatin 2 (TRPM2) channel plays a central role in connecting redox state with calcium signaling in living cells. This coupling makes TRPM2 essential for physiological functions such as pancreatic insulin secretion or cytokine production, but also allows it to contribute to pathological processes, including neuronal cell death or ischemia-reperfusion injury. Genetic deletion of the channel, albeit not lethal, alters physiological functions in mice. In humans, population genetic studies and whole-exome sequencing have identified several common and rare genetic variants associated with mental disorders and neurodegenerative diseases, including single nucleotide variants (SNVs) in exonic regions. In this review, we summarize available information on the four best-documented SNVs: one common (rs1556314) and three rare genetic variants (rs139554968, rs35288229, and rs145947009), manifested in amino acid substitutions D543E, R707C, R755C, and P1018L respectively. We discuss existing evidence supporting or refuting the associations between SNVs and disease. Furthermore, we aim to interpret the molecular impacts of these amino acid substitutions based on recently published structures of human TRPM2. Finally, we formulate testable hypotheses and suggest means to investigate them. Studying the function of proteins with rare mutations might provide insight into disease etiology and delineate new drug targets.


Subject(s)
Neurodegenerative Diseases , TRPM Cation Channels , Humans , Mice , Animals , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Insulin/metabolism , Insulin Secretion , Oxidation-Reduction , Calcium/metabolism
2.
Sci Rep ; 13(1): 21757, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066004

ABSTRACT

Agriculturally important crop plants emit a multitude of volatile organic compounds (VOCs), which are excellent indicators of their health status and their interactions with pathogens and pests. In this study, we have developed a novel cellular olfactory panel for detecting fungal pathogen-related VOCs we had identified in the field, as well as during controlled inoculations of several crop plants. The olfactory panel consists of seven stable HEK293 cell lines each expressing a functional Drosophila olfactory receptor as a biosensing element along with GCaMP6, a fluorescent calcium indicator protein. An automated 384-well microplate reader was used to characterize the olfactory receptor cell lines for their sensitivity to reference VOCs. Subsequently, we profiled a set of 66 VOCs on all cell lines, covering a concentration range from 1 to 100 µM. Results showed that 49 VOCs (74.2%) elicited a response in at least one olfactory receptor cell line. Some VOCs activated the cell lines even at nanomolar (ppb) concentrations. The interaction profiles obtained here will support the development of biosensors for agricultural applications. Additionally, the olfactory receptor proteins can be purified from these cell lines with sufficient yields for further processing, such as structure determination or integration with sensor devices.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Volatile Organic Compounds , Humans , Animals , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/chemistry , Ligands , HEK293 Cells , Insecta/metabolism , Drosophila/metabolism , Volatile Organic Compounds/metabolism , Biomarkers
3.
Front Pharmacol ; 12: 738260, 2021.
Article in English | MEDLINE | ID: mdl-34658875

ABSTRACT

Standard high throughput screening projects using automated patch-clamp instruments often fail to grasp essential details of the mechanism of action, such as binding/unbinding dynamics and modulation of gating. In this study, we aim to demonstrate that depth of analysis can be combined with acceptable throughput on such instruments. Using the microfluidics-based automated patch clamp, IonFlux Mercury, we developed a method for a rapid assessment of the mechanism of action of sodium channel inhibitors, including their state-dependent association and dissociation kinetics. The method is based on a complex voltage protocol, which is repeated at 1 Hz. Using this time resolution we could monitor the onset and offset of both channel block and modulation of gating upon drug perfusion and washout. Our results show that the onset and the offset of drug effects are complex processes, involving several steps, which may occur on different time scales. We could identify distinct sub-processes on the millisecond time scale, as well as on the second time scale. Automated analysis of the results allows collection of detailed information regarding the mechanism of action of individual compounds, which may help the assessment of therapeutic potential for hyperexcitability-related disorders, such as epilepsies, pain syndromes, neuromuscular disorders, or neurodegenerative diseases.

4.
Front Pharmacol ; 12: 738460, 2021.
Article in English | MEDLINE | ID: mdl-34497526

ABSTRACT

We have developed an automated patch-clamp protocol that allows high information content screening of sodium channel inhibitor compounds. We have observed that individual compounds had their specific signature patterns of inhibition, which were manifested irrespective of the concentration. Our aim in this study was to quantify these properties. Primary biophysical data, such as onset rate, the shift of the half inactivation voltage, or the delay of recovery from inactivation, are concentration-dependent. We wanted to derive compound-specific properties, therefore, we had to neutralize the effect of concentration. This study describes how this is done, and shows how compound-specific properties reflect the mechanism of action, including binding dynamics, cooperativity, and interaction with the membrane phase. We illustrate the method using four well-known sodium channel inhibitor compounds, riluzole, lidocaine, benzocaine, and bupivacaine. Compound-specific biophysical properties may also serve as a basis for deriving parameters for kinetic modeling of drug action. We discuss how knowledge about the mechanism of action may help to predict the frequency-dependence of individual compounds, as well as their potential persistent current component selectivity. The analysis method described in this study, together with the experimental protocol described in the accompanying paper, allows screening for inhibitor compounds with specific kinetic properties, or with specific mechanisms of inhibition.

5.
Br J Pharmacol ; 178(5): 1200-1217, 2021 03.
Article in English | MEDLINE | ID: mdl-33450052

ABSTRACT

BACKGROUND AND PURPOSE: Sodium channel inhibitors can be used to treat hyperexcitability-related diseases, including epilepsies, pain syndromes, neuromuscular disorders and cardiac arrhythmias. The applicability of these drugs is limited by their nonspecific effect on physiological function. They act mainly by sodium channel block and in addition by modulation of channel kinetics. While channel block inhibits healthy and pathological tissue equally, modulation can preferentially inhibit pathological activity. An ideal drug designed to target the sodium channels of pathological tissue would act predominantly by modulation. Thus far, no such drug has been described. EXPERIMENTAL APPROACH: Patch-clamp experiments with ultra-fast solution exchange and photolabeling-coupled electrophysiology were applied to describe the unique mechanism of riluzole on Nav1.4 sodium channels. In silico docking experiments were used to study the molecular details of binding. KEY RESULTS: We present evidence that riluzole acts predominantly by non-blocking modulation. We propose that, being a relatively small molecule, riluzole is able to stay bound to the binding site, but nonetheless stay off the conduction pathway, by residing in one of the fenestrations. We demonstrate how this mechanism can be recognized. CONCLUSIONS AND IMPLICATIONS: Our results identify riluzole as the prototype of this new class of sodium channel inhibitors. Drugs of this class are expected to selectively prevent hyperexcitability, while having minimal effect on cells firing at a normal rate from a normal resting potential.


Subject(s)
Sodium Channel Blockers , Sodium Channels , Binding Sites , HEK293 Cells , Humans , Membrane Potentials , Riluzole/pharmacology , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...