Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Curr Opin Insect Sci ; 62: 101167, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38280455

ABSTRACT

Are traits with high levels of plasticity more complex in their genetic architecture, as they can be modulated by numerous different environmental inputs? Many authors have assumed that behavioral traits, in part because they are highly plastic, have an exceptionally complex genetic basis. We quantitatively summarized data from 31 genome-wide association studies (GWAS) and 87 traits in Drosophila melanogaster and found no evidence that behavioral traits have fundamental differences in the number of single-nucleotide polymorphisms or the significance or effect size of those associations, compared with nonbehavioral (morphological or physiological) traits. We suggest the assertion that behavioral traits are inherently more complex on a genetic basis compared with other types of traits should not be assumed true, and merits further investigation.


Subject(s)
Drosophila melanogaster , Genome-Wide Association Study , Animals , Drosophila melanogaster/genetics , Phenotype , Polymorphism, Single Nucleotide
2.
Curr Opin Insect Sci ; 58: 101059, 2023 08.
Article in English | MEDLINE | ID: mdl-37230413

ABSTRACT

Eusocial insect societies are fundamentally non-egalitarian. The reproductive caste 'wins' in terms of resource accumulation, whereas non-reproductive workers 'lose'. Here, we argue that the division of labor among workers is also organized by nutritional inequalities. Across vastly different social systems and a variety of hymenopteran species, there is a recurrent pattern of lean foragers and corpulent nest workers. Experimental manipulations confirm causal associations between nutritional differences, associated molecular pathways, and behavioral roles in insect societies. The comparative and functional genomic data suggest that a conserved toolkit of core metabolic, nutrient storage, and signaling genes has evolved to regulate the social insect division of labor. Thus, the unequal distribution of food resources can be considered a fundamental organizing factor in the social insect division of labor.


Subject(s)
Ants , Social Behavior , Animals , Behavior, Animal/physiology , Reproduction/physiology , Insecta , Ants/physiology
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1874): 20220076, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36802779

ABSTRACT

Social insects have provided some of the clearest insights into the origins and evolution of collective behaviour. Over 20 years ago, Maynard Smith and Szathmáry defined the most complex form of insect social behaviour-superorganismality-among the eight major transitions in evolution that explain the emergence of biological complexity. However, the mechanistic processes underlying the transition from solitary life to superorganismal living in insects remain rather elusive. An overlooked question is whether this major transition arose via incremental or step-wise modes of evolution. We suggest that examination of the molecular processes underpinning different levels of social complexity represented across the major transition from solitary to complex sociality can help address this question. We present a framework for using molecular data to assess to what extent the mechanistic processes that take place in the major transition to complex sociality and superorganismality involve nonlinear (implying step-wise evolution) or linear (implying incremental evolution) changes in the underlying molecular mechanisms. We assess the evidence for these two modes using data from social insects and discuss how this framework can be used to test the generality of molecular patterns and processes across other major transitions. This article is part of a discussion meeting issue 'Collective behaviour through time'.


Subject(s)
Biological Evolution , Social Behavior , Animals , Insecta
4.
Genome Biol Evol ; 15(1)2023 01 04.
Article in English | MEDLINE | ID: mdl-36527688

ABSTRACT

The evolution of eusociality requires that individuals forgo some or all their own reproduction to assist the reproduction of others in their group, such as a primary egg-laying queen. A major open question is how genes and genetic pathways sculpt the evolution of eusociality, especially in rudimentary forms of sociality-those with smaller cooperative nests when compared with species such as honeybees that possess large societies. We lack comprehensive comparative studies examining shared patterns and processes across multiple social lineages. Here we examine the mechanisms of molecular convergence across two lineages of bees and wasps exhibiting such rudimentary societies. These societies consist of few individuals and their life histories range from facultative to obligately social. Using six species across four independent origins of sociality, we conduct a comparative meta-analysis of publicly available transcriptomes. Standard methods detected little similarity in patterns of differential gene expression in brain transcriptomes among reproductive and non-reproductive individuals across species. By contrast, both supervised machine learning and consensus co-expression network approaches uncovered sets of genes with conserved expression patterns among reproductive and non-reproductive phenotypes across species. These sets overlap substantially, and may comprise a shared genetic "toolkit" for sociality across the distantly related taxa of bees and wasps and independently evolved lineages of sociality. We also found many lineage-specific genes and co-expression modules associated with social phenotypes and possible signatures of shared life-history traits. These results reveal how taxon-specific molecular mechanisms complement a core toolkit of molecular processes in sculpting traits related to the evolution of eusociality.


Subject(s)
Gene Regulatory Networks , Wasps , Bees/genetics , Animals , Social Behavior , Wasps/genetics , Transcriptome , Reproduction/genetics , Machine Learning
5.
J Econ Entomol ; 115(1): 1-9, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34850022

ABSTRACT

Extreme weather events, like high temperatures and droughts, are predicted to become common with climate change, and may negatively impact plant growth. How honey bees (Apis mellifera L. [Hymenoptera: Apidae]) will respond to this challenge is unclear, especially when collecting pollen, their primary source of protein, lipids, and micro-nutrients. We explored this response with a data set from multiple research projects that measured pollen collected by honey bees during 2015-2017 in which above-average temperatures and a drought occurred in 2017. We summarized the abundance and diversity of pollen collected from July to September in replicated apiaries kept at commercial soybean and corn farms in Iowa, in the Midwestern USA. The most commonly collected pollen was from clover (Trifolium spp. [Fabales: Fabaceae]), which dramatically declined in absolute and relative abundance in July 2017 during a period of high temperatures and drought. Due to an apparent lack of clover, honey bees switched to the more drought-tolerant native species (e.g., Chamaecrista fasciculata [Michx.] Greene [Fabales: Fabaceae], Dalea purpurea Vent. [Fabales: Fabaceae], Solidago spp. [Asterales: Asteraceae]), and several species of Asteraceae. This was especially noticeable in August 2017 when C. fasciculata dominated (87%) and clover disappeared from bee-collected pollen. We discuss the potential implications of climate-induced forage dearth on honey bee nutritional health. We also compare these results to a growing body of literature on the use of native, perennial flowering plants found in Midwestern prairies for the conservation of beneficial insects. We discuss the potential for drought resistant-native plants to potentially promote resilience to climate change for the non-native, managed honey bee colonies in the United States.


Subject(s)
Hymenoptera , Magnoliopsida , Animals , Bees , Farms , Plants , Pollen
6.
Sci Rep ; 11(1): 13961, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34234217

ABSTRACT

The consequences of early-life experiences are far reaching. In particular, the social and nutritional environments that developing animals experience can shape their adult phenotypes. In honeybees, larval nutrition determines the eventual social roles of adults as reproductive queens or sterile workers. However, little is known about the effects of developmental nutrition on important adult worker phenotypes such as disease resilience. In this study, we manipulated worker developmental nutrition in two distinct ways under semi-natural field conditions. In the first experiment, we restricted access to nutrition via social isolation by temporarily preventing alloparental care. In the second experiment, we altered the diet quality experienced by the entire colony, leading to adult bees that had developed entirely in a nutritionally restricted environment. When bees from these two experiments reached the adult stage, we challenged them with a common bee virus, Israeli acute paralysis virus (IAPV) and compared mortality, body condition, and the expression of immune genes across diet and viral inoculation treatments. Our findings show that both forms of early life nutritional stress, whether induced by lack of alloparental care or diet quality restriction, significantly reduced bees' resilience to virus infection and affected the expression of several key genes related to immune function. These results extend our understanding of how early life nutritional environment can affect phenotypes relevant to health and highlight the importance of considering how nutritional stress can be profound even when filtered through a social group. These results also provide important insights into how nutritional stress can affect honeybee health on a longer time scale and its potential to interact with other forms of stress (i.e. disease).


Subject(s)
Animal Diseases/etiology , Bees/virology , Disease Susceptibility , Environment , Host-Pathogen Interactions , Virus Diseases/veterinary , Animal Feed , Animals , Gene Expression , Host-Pathogen Interactions/genetics , Viral Load
7.
Curr Opin Insect Sci ; 47: 154-161, 2021 10.
Article in English | MEDLINE | ID: mdl-34325080

ABSTRACT

Ecosystems are interconnected and complex, but conservation has often focused on rehabilitating individual species. A systems-ecology approach aims to support overall structure and maintain functions of the whole ecosystem, and may be especially pertinent for mutualistic plant-pollinator communities. This approach focuses on species interactions as the units to be conserved within the larger ecosystem. Analyzing species interactions is a more holistic approach because it incorporates a broader web of organisms, and considers the plethora of potential indirect influences from interacting partners. In this article, we suggest pollinator researchers focus on plant-pollinator networks to inform conservation programs and best support the coexistence of pollinators and plants within natural and agricultural systems. We propose that a system-ecology perspective is the most promising way to simultaneously improve pollinator conservation, agricultural sustainability, and human well-being.


Subject(s)
Ecosystem , Pollination , Animals , Ecology , Plants , Symbiosis
8.
Insects ; 12(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801848

ABSTRACT

Honey bee colonies have a yearly cycle that is supported nutritionally by the seasonal progression of flowering plants. In the spring, colonies grow by rearing brood, but in the fall, brood rearing declines in preparation for overwintering. Depending on where colonies are located, the yearly cycle can differ especially in overwintering activities. In temperate climates of Europe and North America, colonies reduce or end brood rearing in the fall while in warmer climates bees can rear brood and forage throughout the year. To test the hypothesis that nutrients available in seasonal pollens and honey bee responses to them can differ we analyzed pollen in the spring and fall collected by colonies in environments where brood rearing either stops in the fall (Iowa) or continues through the winter (Arizona). We fed both types of pollen to worker offspring of queens that emerged and open mated in each type of environment. We measured physiological responses to test if they differed depending on the location and season when the pollen was collected and the queen line of the workers that consumed it. Specifically, we measured pollen and protein consumption, gene expression levels (hex 70, hex 110, and vg) and hypopharyngeal gland (HPG) development. We found differences in macronutrient content and amino and fatty acids between spring and fall pollens from the same location and differences in nutrient content between locations during the same season. We also detected queen type and seasonal effects in HPG size and differences in gene expression between bees consuming spring vs. fall pollen with larger HPG and higher gene expression levels in those consuming spring pollen. The effects might have emerged from the seasonal differences in nutritional content of the pollens and genetic factors associated with the queen lines we used.

9.
J Insect Sci ; 21(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33620484

ABSTRACT

Prairie was a dominant habitat within large portions of North America before European settlement. Conversion of prairies to farmland resulted in the loss of a large proportion of native floral resources, contributing to the decline of native pollinator populations. Efforts to reconstruct prairie could provide honey bees (Apis mellifera) a source of much-needed forage, especially in regions dominated by crop production. To what extent honey bees, which were introduced to North America by European settlers, use plants native to prairies is unclear. We placed colonies with pollen traps within reconstructed prairies in central Iowa to determine which and how much pollen is collected from prairie plants. Honey bee colonies collected more pollen from nonnative than native plants during June and July. During August and September, honey bee colonies collected more pollen from plants native to prairies. Our results suggest that honey bees' use of native prairie plants may depend upon the seasonality of both native and nonnative plants present in the landscape. This finding may be useful for addressing the nutritional health of honey bees, as colonies in this region frequently suffer from a dearth of forage contributing to colony declines during August and September when crops and weedy plants cease blooming. These results suggest that prairie can be a significant source of forage for honey bees in the later part of the growing season in the Midwestern United States; we discuss this insight in the context of honey bee health and biodiversity conservation.


Subject(s)
Beekeeping , Bees/physiology , Grassland , Introduced Species , Magnoliopsida , Pollen , Animals , Feeding Behavior , Iowa , Magnoliopsida/physiology , Seasons
10.
Commun Biol ; 4(1): 253, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637860

ABSTRACT

While it is well known that the genome can affect social behavior, recent models posit that social lifestyles can, in turn, influence genome evolution. Here, we perform the most phylogenetically comprehensive comparative analysis of 16 bee genomes to date: incorporating two published and four new carpenter bee genomes (Apidae: Xylocopinae) for a first-ever genomic comparison with a monophyletic clade containing solitary through advanced eusocial taxa. We find that eusocial lineages have undergone more gene family expansions, feature more signatures of positive selection, and have higher counts of taxonomically restricted genes than solitary and weakly social lineages. Transcriptomic data reveal that caste-affiliated genes are deeply-conserved; gene regulatory and functional elements are more closely tied to social phenotype than phylogenetic lineage; and regulatory complexity increases steadily with social complexity. Overall, our study provides robust empirical evidence that social evolution can act as a major and surprisingly consistent driver of macroevolutionary genomic change.


Subject(s)
Bees/genetics , Behavior, Animal , Evolution, Molecular , Genes, Insect , Genome, Insect , Social Behavior , Animals , Gene Expression Profiling , Gene Expression Regulation , Gene-Environment Interaction , Genomics , Phylogeny , Species Specificity , Transcriptome
11.
Environ Entomol ; 50(2): 455-466, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33492382

ABSTRACT

Populations of wild and managed pollinators are declining in North America, and causes include increases in disease pressure and decreases in flowering resources. Tallgrass prairies can provide floral resources for managed honey bees (Hymenoptera: Apidae, Apis mellifera Linnaeus) and wild bees. Honey bees kept near prairies may compete with wild bees for floral resources, and potentially transfer viral pathogens to wild bees. Measurements of these potential interactions are lacking, especially in the context of native habitat conservation. To address this, we assessed abundance and richness of wild bees in prairies with and without honey bee hives present, and the potential spillover of several honey bee viruses to bumble bees (Hymenoptera: Apidae, Bombus Latrielle). We found no indication that the presence of honey bee hives over 2 yr had a negative effect on population size of wild bee taxa, though a potential longer-term effect remains unknown. All levels of viruses quantified in bumble bees were lower than those observed in honey bees. Higher levels of deformed wing virus and Israeli acute paralysis virus were found in Bombus griseocollis DeGeer (Hymenoptera: Apidae) collected at sites with hives than those without hives. These data suggest that the presence of honey bees in tallgrass prairie could increase wild bee exposure to viruses. Additional studies on cross-species transmission of viruses are needed to inform decisions regarding the cohabitation of managed bees within habitat utilized by wild bees.


Subject(s)
Hymenoptera , RNA Viruses , Animals , Bees , Grassland , North America
12.
Insects ; 11(6)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545613

ABSTRACT

To study how honey bees utilize forage resources and guide pollination management plans in crops, a multitude of methods have been developed, but most are time consuming, costly, and require specialized skills. Colored pan traps for monitoring activity-density are a simple, efficient, and cost-effective alternative; however, their usefulness for studying honey bees is not well described. We examined if trap color, location within a field, and the presence of managed colonies affected estimates of honey bee activity-density within soybean fields. Soybeans are visited by pollinators but do not require these visits for seed development. Pan traps, especially those colored blue, captured more honey bees when colonies were present. There were no differences in activity-density based on placement of traps within a field nor with increasing distance from colonies. Throughout the season, activity-density in soybeans was constant but tripled after soybean ceased blooming, suggesting spikes in pan trap captures may indicate periods of forage scarcity. Activity-density did not correlate with the population size of worker bees at a site, but did correlate with number of colonies present. We conclude that pan traps can be useful for assessing honey bee activity, particularly for estimating colony presence and identifying times of forage scarcity.

13.
Horm Behav ; 124: 104774, 2020 08.
Article in English | MEDLINE | ID: mdl-32422196

ABSTRACT

Identifying the genetic basis of behavior has remained a challenge for biologists. A major obstacle to this goal is the difficulty of examining gene function in an ecologically relevant context. New tools such as CRISPR/Cas9, which alter the germline of an organism, have taken center stage in functional genomics in non-model organisms. However, germline modifications of this nature cannot be ethically implemented in the wild as a part of field experiments. This impediment is more than technical. Gene function is intimately tied to the environment in which the gene is expressed, especially for behavior. Most lab-based studies fail to recapitulate an organism's ecological niche, thus most published functional genomics studies of gene-behavior relationships may provide an incomplete or even inaccurate assessment of gene function. In this review, we highlight RNA interference as an especially effective experimental method to deepen our understanding of the interplay between genes, behavior, and the environment. We highlight the utility of RNAi for researchers investigating behavioral genetics, noting unique attributes of RNAi including transience of effect and the feasibility of releasing treated animals into the wild, that make it especially useful for studying the function of behavior-related genes. Furthermore, we provide guidelines for planning and executing an RNAi experiment to study behavior, including challenges to consider. We urge behavioral ecologists and functional genomicists to adopt a more fully integrated approach which we call "ethological genomics". We advocate this approach, utilizing tools such as RNAi, to study gene-behavior relationships in their natural context, arguing that such studies can provide a deeper understanding of how genes can influence behavior, as well as ecological aspects beyond the organism that houses them.


Subject(s)
Behavior, Animal/physiology , Gene-Environment Interaction , Genetic Association Studies , Genomics/methods , RNA Interference/physiology , Animals , Behavioral Research/methods , Behavioral Research/trends , Biological Evolution , Ecosystem , Genetic Association Studies/methods , Genetic Association Studies/trends , Genetic Association Studies/veterinary , Genomics/trends , Phenotype , Species Specificity
14.
Proc Natl Acad Sci U S A ; 117(19): 10406-10413, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32341145

ABSTRACT

Anthropogenic changes create evolutionarily novel environments that present opportunities for emerging diseases, potentially changing the balance between host and pathogen. Honey bees provide essential pollination services, but intensification and globalization of honey bee management has coincided with increased pathogen pressure, primarily due to a parasitic mite/virus complex. Here, we investigated how honey bee individual and group phenotypes are altered by a virus of concern, Israeli acute paralysis virus (IAPV). Using automated and manual behavioral monitoring of IAPV-inoculated individuals, we find evidence for pathogen manipulation of worker behavior by IAPV, and reveal that this effect depends on social context; that is, within versus between colony interactions. Experimental inoculation reduced social contacts between honey bee colony members, suggesting an adaptive host social immune response to diminish transmission. Parallel analyses with double-stranded RNA (dsRNA)-immunostimulated bees revealed these behaviors are part of a generalized social immune defensive response. Conversely, inoculated bees presented to groups of bees from other colonies experienced reduced aggression compared with dsRNA-immunostimulated bees, facilitating entry into susceptible colonies. This reduction was associated with a shift in cuticular hydrocarbons, the chemical signatures used by bees to discriminate colony members from intruders. These responses were specific to IAPV infection, suggestive of pathogen manipulation of the host. Emerging bee pathogens may thus shape host phenotypes to increase transmission, a strategy especially well-suited to the unnaturally high colony densities of modern apiculture. These findings demonstrate how anthropogenic changes could affect arms races between human-managed hosts and their pathogens to potentially affect global food security.


Subject(s)
Bees/virology , Dicistroviridae/metabolism , Host-Pathogen Interactions/physiology , Animals , Beekeeping/methods , Bees/genetics , Behavior, Animal , Colony Collapse/epidemiology , DNA Viruses/genetics , DNA Viruses/metabolism , Dicistroviridae/genetics , Dicistroviridae/pathogenicity , Disease Transmission, Infectious/veterinary , Mites/genetics , Pollination , RNA, Double-Stranded , Social Behavior , Virulence
15.
J Econ Entomol ; 113(3): 1062-1072, 2020 06 06.
Article in English | MEDLINE | ID: mdl-32274498

ABSTRACT

Intensified agriculture reduces natural and seminatural habitats and plant diversity, reducing forage available to honey bees (Apis mellifera L. [Hymenoptera: Apidea]). In agricultural landscapes of Iowa, United States, we studied the impact of extrinsic agricultural intensification on the availability of pollen for honey bees by placing colonies next to soybean fields surrounded by either a low or high level of cultivation. The abundance and diversity of pollen returned to a colony were estimated by placing pollen traps on bee colonies during the summer and fall of 2015 and 2016. We observed no difference in abundance and diversity of pollen collected by colonies in either landscape, but abundance varied over time with significantly less collected in September. We explored if the most commonly collected pollen from these landscapes had the capacity to support honey bee immune health by testing if diets consisting of these pollens improved bee resistance to a viral infection. Compared to bees denied pollen, a mixture of pollen from the two most common plant taxa (Trifolium spp. L. [Fabales: Fabaceae] and Chimaechrista fasciculata (Michx.) Greene [Fabales: Fabaceae]) significantly reduced honey bee mortality induced by viral infection. These data suggest that a community of a few common plants was favored by honey bees, and when available, could be valuable for reducing mortality from a viral infection. Our data suggest a late season shortage of pollen may be ameliorated by additions of fall flowering plants, like goldenrod (Solidago spp. L. [Asterales: Asteraceae]) and sunflower (Helianthus, Heliopsis, and Silphium spp. [Asterales: Asteraceae]), as options for enhancing pollen availability and quality for honey bees in agricultural landscapes.


Subject(s)
Hymenoptera , Agriculture , Animals , Bees , Diet , Iowa , Pollen
16.
Environ Entomol ; 49(3): 753-764, 2020 06 13.
Article in English | MEDLINE | ID: mdl-32249293

ABSTRACT

In the last century, a global transformation of Earth's surface has occurred due to human activity with extensive agriculture replacing natural ecosystems. Concomitant declines in wild and managed bees are occurring, largely due to a lack of floral resources and inadequate nutrition, caused by conversion to monoculture-based farming. Diversified fruit and vegetable farms may provide an enhanced variety of resources through crops and weedy plants, which have potential to sustain human and bee nutrition. We hypothesized fruit and vegetable farms can enhance honey bee (Hymenoptera: Apidae, Apis mellifera Linnaeus) colony growth and nutritional state over a soybean monoculture, as well as support a more diverse wild bee community. We tracked honey bee colony growth, nutritional state, and wild bee abundance, richness, and diversity in both farm types. Honey bees kept at diversified farms had increased colony weight and preoverwintering nutritional state. Regardless of colony location, precipitous declines in colony weight occurred during autumn and thus colonies were not completely buffered from the stressors of living in a matrix dominated with monocultures. Contrary to our hypothesis, wild bee diversity was greater in soybean, specifically in August, a time when fields are in bloom. These differences were largely driven by four common bee species that performed well in soybean. Overall, these results suggest fruit and vegetable farms provide some benefits for honey bees; however, they do not benefit wild bee communities. Thus, incorporation of natural habitat, rather than diversified farming, in these landscapes, may be a better choice for wild bee conservation efforts.


Subject(s)
Ecosystem , Hymenoptera , Agriculture , Animals , Bees , Crops, Agricultural , Farms
17.
J Insect Physiol ; 120: 103972, 2020 01.
Article in English | MEDLINE | ID: mdl-31705844

ABSTRACT

Hormones are often major regulators of complex behaviors, such as mating and reproduction. In insects, juvenile hormone (JH) is integral to many components of reproductive physiology and behavior, but its role in female sexual receptivity is not well understood. To investigate the influence of JH on receptivity, we utilized the social wasp Polistes fuscatus. In Polistes, mating behavior is temporally separated from other components of reproduction, which allows for examination of the physiology and behavior of mating, disentangled from fertilization and egg-laying. We reared virgin gynes (reproductive females) in the lab and divided them into four groups, in which gynes received multiple topical treatments of either 20 µg, 10 µg, 5 µg, or 0 µg of the JH analog methoprene. Gynes were then placed in petri dishes with 2 unrelated males and we recorded attempted and successful mating. Additionally, we measured gyne ovarian development and survival in each group. We found that methoprene increased both sexual receptivity and ovarian development, but was associated with a decrease in long-term survival. Receptivity increased linearly as methoprene treatment increased, but the effect of methoprene on ovarian development was independent of dose. These results demonstrate the importance of JH in sexual receptivity and mating behavior. We argue that the relatively understudied Polistes gyne has potential as a model for mating and reproduction, and for the internal and external regulation of this complex behavior.


Subject(s)
Methoprene/pharmacology , Sexual Behavior, Animal/drug effects , Wasps/physiology , Animals , Dose-Response Relationship, Drug , Female , Methoprene/administration & dosage , Ovary/drug effects , Ovary/growth & development , Reproduction/drug effects , Reproduction/physiology , Wasps/growth & development
18.
Proc Natl Acad Sci U S A ; 116(50): 25147-25155, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31767769

ABSTRACT

Intensive agriculture can contribute to pollinator decline, exemplified by alarmingly high annual losses of honey bee colonies in regions dominated by annual crops (e.g., midwestern United States). As more natural or seminatural landscapes are transformed into monocultures, there is growing concern over current and future impacts on pollinators. To forecast how landscape simplification can affect bees, we conducted a replicated, longitudinal assessment of honey bee colony growth and nutritional health in an intensively farmed region where much of the landscape is devoted to production of corn and soybeans. Surprisingly, colonies adjacent to soybean fields surrounded by more cultivated land grew more during midseason than those in areas of lower cultivation. Regardless of the landscape surrounding the colonies, all experienced a precipitous decline in colony weight beginning in August and ended the season with reduced fat stores in individual bees, both predictors of colony overwintering failure. Patterns of forage availability and colony nutritional state suggest that late-season declines were caused by food scarcity during a period of extremely limited forage. To test if habitat enhancements could ameliorate this response, we performed a separate experiment in which colonies provided access to native perennials (i.e., prairie) were rescued from both weight loss and reduced fat stores, suggesting the rapid decline observed in these agricultural landscapes is not inevitable. Overall, these results show that intensively farmed areas can provide a short-term feast that cannot sustain the long-term nutritional health of colonies; reintegration of biodiversity into such landscapes may provide relief from nutritional stress.


Subject(s)
Agriculture , Bees/physiology , Ecosystem , Pollination/physiology , Animals , Biodiversity , Crops, Agricultural , Models, Biological , Seasons
19.
Trends Ecol Evol ; 34(9): 844-855, 2019 09.
Article in English | MEDLINE | ID: mdl-31130318

ABSTRACT

Although social behavior can have a strong genetic component, it can also result in selection on genome structure and function, thereby influencing the evolution of the genome itself. Here we explore the bidirectional links between social behavior and genome architecture by considering variation in social and/or mating behavior among populations (social polymorphisms) and across closely related species. We propose that social behavior can influence genome architecture via associated demographic changes due to social living. We establish guidelines to exploit emerging whole-genome sequences using analytical approaches that examine genome structure and function at different levels (regulatory vs structural variation) from the perspective of both molecular biology and population genetics in an ecological context.


Subject(s)
Genome , Social Behavior , Ecology , Genetics, Population
20.
BMC Genomics ; 20(1): 412, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31117959

ABSTRACT

BACKGROUND: Parts of Europe and the United States have witnessed dramatic losses in commercially managed honey bees over the past decade to what is considered an unsustainable extent. The large-scale loss of bees has considerable implications for the agricultural economy because bees are one of the leading pollinators of numerous crops. Bee declines have been associated with several interactive factors. Recent studies suggest nutritional and pathogen stress can interactively contribute to bee physiological declines, but the molecular mechanisms underlying interactive effects remain unknown. In this study, we provide insight into this question by using RNA-sequencing to examine how monofloral diets and Israeli acute paralysis virus inoculation influence gene expression patterns in bees. RESULTS: We found a considerable nutritional response, with almost 2000 transcripts changing with diet quality. The majority of these genes were over-represented for nutrient signaling (insulin resistance) and immune response (Notch signaling and JaK-STAT pathways). In our experimental conditions, the transcriptomic response to viral infection was fairly limited. We only found 43 transcripts to be differentially expressed, some with known immune functions (argonaute-2), transcriptional regulation, and muscle contraction. We created contrasts to explore whether protective mechanisms of good diet were due to direct effects on immune function (resistance) or indirect effects on energy availability (tolerance). A similar number of resistance and tolerance candidate differentially expressed genes were found, suggesting both processes may play significant roles in dietary buffering from pathogen infection. CONCLUSIONS: Through transcriptional contrasts and functional enrichment analysis, we contribute to our understanding of the mechanisms underlying feedbacks between nutrition and disease in bees. We also show that comparing results derived from combined analyses across multiple RNA-seq studies may allow researchers to identify transcriptomic patterns in bees that are concurrently less artificial and less noisy. This work underlines the merits of using data visualization techniques and multiple datasets to interpret RNA-sequencing studies.


Subject(s)
Bees/genetics , Dicistroviridae/pathogenicity , Diet , Insect Proteins/genetics , Nutritional Status , Transcriptome , Virus Diseases/virology , Animals , Bees/physiology , Bees/virology , Gene Expression Regulation , Genetic Markers , Pollination
SELECTION OF CITATIONS
SEARCH DETAIL
...