Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 4(4): 549-559, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29072835

ABSTRACT

Malaria continues to be one of the deadliest diseases worldwide, and the emergence of drug resistance parasites is a constant threat. Plasmodium parasites utilize the methylerythritol phosphate (MEP) pathway to synthesize isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are essential for parasite growth. Previously, we and others identified that the Malaria Box compound MMV008138 targets the apicoplast and that parasite growth inhibition by this compound can be reversed by supplementation of IPP. Further work has revealed that MMV008138 targets the enzyme 2- C-methyl-d-erythritol 4-phosphate cytidylyltransferase (IspD) in the MEP pathway, which converts MEP and cytidine triphosphate (CTP) to cytidinediphosphate methylerythritol (CDP-ME) and pyrophosphate. In this work, we sought to gain insight into the structure-activity relationships by probing the ability of MMV008138 analogs to inhibit PfIspD recombinant enzyme. Here, we report PfIspD inhibition data for fosmidomycin (FOS) and 19 previously disclosed analogs and report parasite growth and PfIspD inhibition data for 27 new analogs of MMV008138. In addition, we show that MMV008138 does not target the recently characterized human IspD, reinforcing MMV008138 as a prototype of a new class of species-selective IspD-targeting antimalarial agents.


Subject(s)
Antimalarials/pharmacology , Carbolines/pharmacology , Enzyme Inhibitors/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Pipecolic Acids/pharmacology , Plasmodium/drug effects , Plasmodium/enzymology , Antimalarials/chemistry , Carbolines/chemistry , Enzyme Inhibitors/chemistry , Molecular Structure , Pipecolic Acids/chemistry , Plasmodium/growth & development , Structure-Activity Relationship
3.
Neurotoxicology ; 60: 214-223, 2017 May.
Article in English | MEDLINE | ID: mdl-27262624

ABSTRACT

Potential targets for new vector control insecticides are nerve and muscle potassium channels. In this study, the activities of known potassium channel blockers (4-aminopyridine, quinidine, and tetraethylammonium) and the insecticide propoxur were compared to three experimental catechols and several other compounds against Anopheles gambiae and Aedes aegypti mosquitoes. Experimental catechol 1 was the most toxic experimental compound in all of the mortality assays conducted, but was at least 100-fold and 39-fold less toxic than propoxur against Ae. aegypti and An. gambiae, respectively. Injection treatment and synergist (piperonyl butoxide) bioassays found that catechol toxicity was not unduly impacted by cuticular transport or oxidative metabolism. Electrophysiological studies showed a decrease in amplitude of evoked muscle contractions, along with an increase in twitch duration at concentrations that increased basal muscle tension (mM). High concentration effects on basal muscle tension were matched by complete depolarization of the muscle membrane potential. Effects on muscle physiology and blockage of Kv2.1 potassium channels in patch clamp experiments were generally consistent with in vivo toxicity, except for 4-aminopyridine, which suggest the involvement of other potassium channel subtypes. Extensive melanization of Anopheles larvae, but not Aedes larvae, occurred from exposure to catechol compounds. Interaction with the phenol oxidase system within insects may be the cause of this melanization, but any contribution to toxicity requires further investigation.


Subject(s)
Catechols/toxicity , Insect Proteins/physiology , Insecticides/toxicity , Potassium Channel Blockers/toxicity , Potassium Channels/physiology , Propoxur/toxicity , Aedes , Animals , Anopheles , HEK293 Cells , Humans , Larva/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology
4.
Chimia (Aarau) ; 70(10): 704-708, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27779928

ABSTRACT

Widespread pyrethroid resistance has caused an urgent need to develop new insecticides for control of the malaria mosquito, Anopheles gambiae. Insecticide discovery efforts were directed towards the construction of bivalent inhibitors that occupy both the peripheral and catalytic sites of the mosquito acetylcholinesterase (AChE). It was hypothesized that this approach would yield a selective, high potency inhibitor that would also circumvent known catalytic site mutations (e.g. G119S) causing target site resistance. Accordingly, a series of bivalent phthalimide-pyrazole carbamates were prepared having an alkyl chain linker of varying length, along with other modifications. The most active compound was (1-(3-(1,3-dioxoisoindolin-2-yl)propyl)-1H-pyrazol-4-yl methylcarbamate, 8a), which has a chain length of three carbons, good mosquito anticholinesterase activity, and ca. 5-fold selectivity compared to human AChE. Moreover, this compound was toxic to mosquitoes by topical application (LD50 = 63 ng/female) with only 6-fold cross resistance in the Akron strain of Anopheles gambiae that showed 50- to 60-fold resistance to conventional carbamate insecticides. However, contact lethality in the WHO paper assay was disappointing. The implications of these results for design of new mosquitocides are discussed.


Subject(s)
Anopheles , Carbamates/pharmacology , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Control/methods , Animals , Cholinesterase Inhibitors/pharmacology , Drug Design , Insecticide Resistance
5.
Bioorg Med Chem Lett ; 25(20): 4405-11, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26386602

ABSTRACT

Malaria is a devastating disease in sub-Saharan Africa, and current vector control measures are threatened by emerging resistance mechanisms. With the goal of developing new, selective, resistance-breaking insecticides we explored α-fluorinated methyl ketones as reversible covalent inhibitors of Anopheles gambiae acetylcholinesterase (AgAChE). Trifluoromethyl ketones 5 demonstrated remarkable volatility in microtiter plate assays, but 5c,e-h exhibited potent (1-100 nM) inhibition of wild type (WT) AgAChE and weak inhibition of resistant mutant G119S mutant AgAChE. Fluoromethyl ketones 10c-i exhibited submicromolar to micromolar inhibition of WT AgAChE, but again only weakly inhibited G119S AgAChE. Interestingly, difluoromethyl ketone inhibitors 9c and 9g had single digit nanomolar inhibition of WT AgAChE, and 9g had excellent potency against G119S AgAChE. Approach to steady-state inhibition was quite slow, but after 23 h incubation an IC50 value of 25.1 ± 1.2 nM was measured. We attribute the slow, tight-binding G119S AgAChE inhibition of 9g to a balance of steric size and electrophilicity. However, toxicities of 5g, 9g, and 10g to adult A. gambiae in tarsal contact, fumigation, and injection assays were lower than expected based on WT AgAChE inhibition potency and volatility. Potential toxicity-limiting factors are discussed.


Subject(s)
Acetylcholinesterase/metabolism , Anopheles/enzymology , Enzyme Inhibitors/pharmacology , Ketones/pharmacology , Acetylcholinesterase/genetics , Animals , Carbamates/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Ketones/chemical synthesis , Ketones/chemistry , Molecular Structure , Mutation , Structure-Activity Relationship
6.
Bioorg Med Chem ; 23(6): 1321-40, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25684426

ABSTRACT

To identify potential selective and resistance-breaking mosquitocides against the African malaria vector Anopheles gambiae, we investigated the acetylcholinesterase (AChE) inhibitory and mosquitocidal properties of isoxazol-3-yl dimethylcarbamates (15), and the corresponding 3-oxoisoxazole-2(3H)-dimethylcarboxamide isomers (14). In both series, compounds were found with excellent contact toxicity to wild-type susceptible (G3) strain and multiply resistant (Akron) strain mosquitoes that carry the G119S resistance mutation of AChE. Compounds possessing good to excellent toxicity to Akron strain mosquitoes inhibit the G119S mutant of An. gambiae AChE (AgAChE) with ki values at least 10- to 600-fold higher than that of propoxur, a compound that does not kill Akron mosquitoes at the highest concentration tested. On average, inactivation of WT AgAChE by dimethylcarboxamides 14 was 10-20 fold faster than that of the corresponding isoxazol-3-yl dimethylcarbamates 15. X-ray crystallography of dimethylcarboxamide 14d provided insight into that reactivity, a finding that may explain the inhibitory power of structurally-related inhibitors of hormone-sensitive lipase. Finally, human/An. gambiae AChE inhibition selectivities of these compounds were low, suggesting the need for additional structural modification.


Subject(s)
Acetylcholinesterase/metabolism , Anopheles/drug effects , Anopheles/enzymology , Carbamates/pharmacology , Cholinesterase Inhibitors/pharmacology , Isoxazoles/pharmacology , Malaria , Acetylcholinesterase/genetics , Animals , Carbamates/chemical synthesis , Carbamates/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , Malaria/transmission , Molecular Structure , Structure-Activity Relationship
7.
Parasit Vectors ; 7: 577, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25491113

ABSTRACT

BACKGROUND: Phlebotomus papatasi vectors zoonotic cutaneous leishmaniasis. Previous expression of recombinant P. papatasi acetylcholinesterase (PpAChE1) revealed 85% amino acid sequence identity to mosquito AChE and identified synthetic carbamates that effectively inhibited PpAChE1 with improved specificity for arthropod AChEs compared to mammalian AChEs. We hypothesized that the G119S mutation causing high level resistance to organophosphate insecticides in mosquitoes may occur in PpAChE1 and may reduce sensitivity to inhibition. We report construction, expression, and biochemical properties of rPpAChE1 containing the G119S orthologous mutation. METHODS: Targeted mutagenesis introduced the G119S orthologous substitution in PpAChE1 cDNA. Recombinant PpAChE1 enzymes containing or lacking the G119S mutation were expressed in the baculoviral system. Biochemical assays were conducted to determine altered catalytic properties and inhibitor sensitivity resulting from the G119S substitution. A molecular homology model was constructed to examine the modeled structural interference with docking of inhibitors of different classes. Genetic tests were conducted to determine if the G119S orthologous codon existed in polymorphic form in a laboratory colony of P. papatasi. RESULTS: Recombinant PpAChE1 containing the G119S substitution exhibited altered biochemical properties, and reduced inhibition by compounds that bind to the acylation site on the enzyme (with the exception of eserine). Less resistance was directed against bivalent or peripheral site inhibitors, in good agreement with modeled inhibitor docking. Eserine appeared to be a special case capable of inhibition in the absence of covalent binding at the acylation site. Genetic tests did not detect the G119S mutation in a laboratory colony of P. papatasi but did reveal that the G119S codon existed in polymorphic form (GGA + GGC). CONCLUSIONS: The finding of G119S codon polymorphism in a laboratory colony of P. papatasi suggests that a single nucleotide transversion (GGC → AGC) may readily occur, causing rapid development of resistance to organophosphate and phenyl-substituted carbamate insecticides under strong selection. Careful management of pesticide use in IPM programs is important to prevent or mitigate development and fixation of the G119S mutation in susceptible pest populations. Availability of recombinant AChEs enables identification of novel inhibitory ligands with improved efficacy and specificity for AChEs of arthropod pests.


Subject(s)
Acetylcholinesterase/chemistry , Acetylcholinesterase/genetics , Insect Proteins/chemistry , Insect Proteins/genetics , Mutation, Missense , Phlebotomus/enzymology , Acetylcholinesterase/metabolism , Amino Acid Sequence , Animals , Cholinesterase Inhibitors/chemistry , Insect Proteins/metabolism , Molecular Docking Simulation , Molecular Sequence Data , Phlebotomus/chemistry , Phlebotomus/genetics
8.
Pestic Biochem Physiol ; 106(3)2013 Jul 01.
Article in English | MEDLINE | ID: mdl-24187393

ABSTRACT

The cattle tick, Rhipicephalus (Boophilus) microplus (Bm), and the sand fly, Phlebotomus papatasi (Pp), are disease vectors to cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from Bm (BmAChE1) and Pp (PpAChE) compared to human and bovine AChE, in order to identify divergent pharmacology that might lead to selective inhibitors. Results indicate that BmAChE has low sensitivity (IC50 = 200 µM) toward tacrine, a monovalent catalytic site inhibitor with sub micromolar blocking potency in all previous species tested. Similarly, a series of bis(n)-tacrine dimer series, bivalent inhibitors and peripheral site AChE inhibitors possess poor potency toward BmAChE. Molecular homology models suggest the rBmAChE enzyme possesses a W384F orthologous substitution near the catalytic site, where the larger tryptophan side chain obstructs the access of larger ligands to the active site, but functional analysis of this mutation suggests it only partially explains the low sensitivity to tacrine. In addition, BmAChE1 and PpAChE have low nanomolar sensitivity to some experimental carbamate anticholinesterases originally designed for control of the malaria mosquito, Anopheles gambiae. One experimental compound, 2-((2-ethylbutyl)thio)phenyl methylcarbamate, possesses >300-fold selectivity for BmAChE1 and PpAChE over human AChE, and a mouse oral LD50 of >1500 mg/kg, thus providing an excellent new lead for vector control.

9.
Arch Insect Biochem Physiol ; 83(4): 180-94, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23740645

ABSTRACT

A series of bis(n)-tacrines were used as pharmacological probes of the acetylcholinesterase (AChE) catalytic and peripheral sites of Blattella germanica and Drosophila melanogaster, which express AChE-1 and AChE-2 isoforms, respectively. In general, the potency of bis(n)-tacrines was greater in D. melanogaster AChE (DmAChE) than in B. germanica AChE (BgAChE). The change in potency with tether length was high in DmAChE and low in BgAChE, associated with 90-fold and 5.2-fold maximal potency gain, respectively, compared to the tacrine monomer. The optimal tether length for Blattella was 8 carbons and for Drosophila was 10 carbons. The two species differed by only about twofold in their sensitivity to tacrine monomer, indicating that differential potency occurred among dimeric bis(n)-tacrines due to structural differences in the peripheral site. Multiple sequence alignment and in silico homology modeling suggest that aromatic residues of DmAChE confer higher affinity binding, and the lack of same at the BgAChE peripheral site may account, at least in part, to the greater overall sensitivity of DmAChE to bis(n)-tacrines, as reflected by in vitro assay data. Topical and injection assays in cockroaches found minimal toxicity of bis(n)-tacrines. Electrophysiological studies on D. melanogaster central nervous system showed that dimeric tacrines do not readily cross the blood brain barrier, explaining the observed nonlethality to insects. Although the bis(n)-tacrines were not good insecticide candidates, the information obtained in this study should aid in the design of selective bivalent ligands targeting insect, pests, and disease vectors.


Subject(s)
Acetylcholinesterase/metabolism , Cockroaches/enzymology , Drosophila melanogaster/enzymology , Models, Molecular , Tacrine/toxicity , Acetylcholinesterase/chemistry , Acetylcholinesterase/genetics , Action Potentials/drug effects , Action Potentials/physiology , Animals , Base Sequence , Blood-Brain Barrier/metabolism , Cockroaches/drug effects , Drosophila melanogaster/drug effects , Female , Molecular Docking Simulation , Molecular Sequence Data , Molecular Structure , Sequence Alignment , Species Specificity , Tacrine/chemistry , Tacrine/pharmacokinetics
10.
Bioorg Med Chem Lett ; 22(14): 4593-8, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22738634

ABSTRACT

To identify potential human-safe insecticides against the malaria mosquito we undertook an investigation of the structure-activity relationship of aryl methylcarbamates inhibitors of acetylcholinesterase (AChE). Compounds bearing a ß-branched 2-alkoxy or 2-thioalkyl group were found to possess good selectivity for inhibition of Anopheles gambiae AChE over human AChE; up to 530-fold selectivity was achieved with carbamate 11d. A 3D QSAR model is presented that is reasonably consistent with log inhibition selectivity of 34 carbamates. Toxicity of these compounds to live Anopheles gambiae was demonstrated using both tarsal contact (filter paper) and topical application protocols.


Subject(s)
Acetylcholinesterase/metabolism , Anopheles/enzymology , Cholinesterase Inhibitors/chemical synthesis , Animals , Anopheles/drug effects , Carbamates , Cholinesterase Inhibitors/pharmacology , Humans , Models, Molecular , Molecular Structure , Quantitative Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 21(13): 3992-6, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21621412

ABSTRACT

In the course of a ß-site APP-cleaving enzyme 1 (BACE1) inhibitor discovery project an in situ synthesis/screening protocol was employed to prepare 120 triazole-linked reduced amide isostere inhibitors. Among these compounds, four showed modest (single digit micromolar) BACE1 inhibition. Our ligand design was based on a potent reduced amide isostere 1, wherein the P(2) amide moiety was replaced with an anti-1,2,3-triazole unit. Unfortunately, this replacement resulted in a 1000-fold decrease in potency. Docking studies of triazole-linked reduced amide isostere A3Z10 and potent oxadiazole-linked tertiary carbinamine 2a with BACE1 suggests that the docking poses of A3Z10 and 2a in the active sites are quite similar, with one exception. In the docked structures the placement of the protonated amine that engages D228 differs considerably between 2a and A3Z10. This difference could account for the lower BACE1 inhibition potency of A3Z10 and related compounds relative to 2a.


Subject(s)
Alzheimer Disease/drug therapy , Amides/chemical synthesis , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Triazoles/chemistry , Amides/chemistry , Amides/therapeutic use , Catalytic Domain , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Oxidation-Reduction , Small Molecule Libraries
12.
Chem Biol Interact ; 175(1-3): 368-75, 2008 Sep 25.
Article in English | MEDLINE | ID: mdl-18554580

ABSTRACT

Anopheles gambiae is the major mosquito vector of malaria in sub-Saharan Africa. At present, insecticide-treated nets (ITNs) impregnated with pyrethroid insecticides are widely used in malaria-endemic regions to reduce infection; however the emergence of pyrethroid-resistant mosquitoes has significantly reduced the effectiveness of the pyrethroid ITNs. An acetylcholinesterase (AChE) inhibitor that is potent for An. gambiae but weakly potent for the human enzyme could potentially be safely deployed on a new class of ITNs. In this paper we provide a preliminary pharmacological characterization of An. gambiae AChE, discuss structural features of An. gambiae and human AChE that could lead to selective inhibition, and describe compounds with 130-fold selectivity for inhibition of An. gambiae AChE relative to human AChE.


Subject(s)
Acetylcholinesterase/drug effects , Anopheles/drug effects , Cholinesterase Inhibitors/pharmacology , Insect Vectors , Malaria/transmission , Acetylcholinesterase/chemistry , Amino Acid Sequence , Animals , Anopheles/enzymology , Anopheles/growth & development , Humans , Models, Molecular , Molecular Sequence Data , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...