Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 359: 120929, 2024 May.
Article in English | MEDLINE | ID: mdl-38669878

ABSTRACT

Understanding the variations in the geochemical composition of phosphogypsum (PG) destined for storage or valorization is crucial for assessing the safety and operational efficacy of waste management. The present study aimed to investigate the environmental behavior of PG using different leaching tests and to evaluate its geochemical behavior using geochemical modeling. Regarding the chemical characterization, the PG samples were predominantly composed of Ca (23.03-23.35 wt%), S (17.65-17.71 wt%), and Si (0.75-0.82 wt%). Mineralogically, the PG samples were primarily composed of gypsum (94.2-95.9 wt%) and quartz (1.67-1.76 wt%). Moreover, the automated mineralogy revealed the presence of apatite, fluorine and malladrite phases. The overall findings of the leaching tests showed that PG could be considered as non-hazardous material according to US Environmental Protection Agency limitations. However, a high leachability of elements at a L/S of 2 under acidic conditions ([Ca] = 166.52-199.87 mg/L, [S] = 207.9-233.59 mg/L, [F] = 248.62-286.65 mg/L) is observed. The weathering cell test revealed a considerable cumulative concentration over 90 days indicating potential adverse effects on the nearby environment (S: 8000 mg/kg, F: 3000 mg/kg, P: 700 mg/kg). Based on these results, it could be estimated that the surface storage of PG could have a serious impact on the environment. In this context, a simulation model was developed based on weathering cell results showed encouraging results for treating PG leachate using CaO before its disposal. Additionally, PHREEQC was used to analyze the speciation of major elements and calculate mineral phase saturation indices in PG leaching solutions. The findings revealed pH-dependent speciation for Ca, S, P, and F. The study identified gypsum, anhydrite, and bassanite as the key phases governing the dissolution of these elements.


Subject(s)
Calcium Sulfate , Phosphorus , Calcium Sulfate/chemistry , Calcium Sulfate/analysis , Phosphorus/analysis , Phosphorus/chemistry , Waste Management/methods
2.
Environ Pollut ; 313: 120125, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36089139

ABSTRACT

Mine waste classification preceding mining constitutes a proactive solution to classify and segregate mine waste into geo-environmental domains based upon the magnitude of their environmental risks. However, upstream classification requires multi-disciplinary and integrated approaches. This study integrates geological modeling and kinetic modeling to inform upstream mine waste classification based on the pH generated from the main acid-generating and acid-neutralizing reactions once the mine solid waste is stored in oxidizing conditions. Geological models were used to depict the ante-mining spatial distribution of the main reactive minerals: pyrite, albite and calcite. Subsequently, the corresponding block models were created. The dimension of the elementary voxels for each block model was set at 40х40х40 m for this study. The kinetic modeling approach was performed using PHREEQC and VS2DRTI to consider unsaturated conditions. The kinetic modeling simulated a 1D column for each voxel. The column simulates the excavated state of the hosting rock involving kinetic reactions and unsaturated flow under highly oxidizing conditions. Subsequently, the resulting pH for different intervals of time was assigned to its respective voxel. The outcome consists of a spatio-temporal visualization of the pH defining ante-mining geo-environmental domains, thereby providing the opportunity for formulating proactive management measures regarding the hazardous geo-environmental domains.


Subject(s)
Environmental Monitoring , Solid Waste , Acids , Calcium Carbonate , Environmental Monitoring/methods , Minerals , Mining
SELECTION OF CITATIONS
SEARCH DETAIL
...