Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Microbiome ; 12(1): 50, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38468305

ABSTRACT

BACKGROUND: Antibiotics notoriously perturb the gut microbiota. We treated healthy volunteers either with cefotaxime or ceftriaxone for 3 days, and collected in each subject 12 faecal samples up to day 90. Using untargeted and targeted phenotypic and genotypic approaches, we studied the changes in the bacterial, phage and fungal components of the microbiota as well as the metabolome and the ß-lactamase activity of the stools. This allowed assessing their degrees of perturbation and resilience. RESULTS: While only two subjects had detectable concentrations of antibiotics in their faeces, suggesting important antibiotic degradation in the gut, the intravenous treatment perturbed very significantly the bacterial and phage microbiota, as well as the composition of the metabolome. In contrast, treatment impact was relatively low on the fungal microbiota. At the end of the surveillance period, we found evidence of resilience across the gut system since most components returned to a state like the initial one, even if the structure of the bacterial microbiota changed and the dynamics of the different components over time were rarely correlated. The observed richness of the antibiotic resistance genes repertoire was significantly reduced up to day 30, while a significant increase in the relative abundance of ß-lactamase encoding genes was observed up to day 10, consistent with a concomitant increase in the ß-lactamase activity of the microbiota. The level of ß-lactamase activity at baseline was positively associated with the resilience of the metabolome content of the stools. CONCLUSIONS: In healthy adults, antibiotics perturb many components of the microbiota, which return close to the baseline state within 30 days. These data suggest an important role of endogenous ß-lactamase-producing anaerobes in protecting the functions of the microbiota by de-activating the antibiotics reaching the colon. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Resilience, Psychological , Adult , Humans , Gastrointestinal Microbiome/genetics , beta-Lactamases/genetics , beta-Lactams/pharmacology , Healthy Volunteers , Anti-Bacterial Agents , Bacteria/genetics , Feces/microbiology
2.
Mol Biol Evol ; 40(10)2023 10 04.
Article in English | MEDLINE | ID: mdl-37788575

ABSTRACT

Bacterial lineages acquire novel traits at diverse rates in part because the genetic background impacts the successful acquisition of novel genes by horizontal transfer. Yet, how horizontal transfer affects the subsequent evolution of core genes remains poorly understood. Here, we studied the evolution of resistance to quinolones in Escherichia coli accounting for population structure. We found 60 groups of genes whose gain or loss induced an increase in the probability of subsequently becoming resistant to quinolones by point mutations in the gyrase and topoisomerase genes. These groups include functions known to be associated with direct mitigation of the effect of quinolones, with metal uptake, cell growth inhibition, biofilm formation, and sugar metabolism. Many of them are encoded in phages or plasmids. Although some of the chronologies may reflect epidemiological trends, many of these groups encoded functions providing latent phenotypes of antibiotic low-level resistance, tolerance, or persistence under quinolone treatment. The mutations providing resistance were frequent and accumulated very quickly. Their emergence was found to increase the rate of acquisition of other antibiotic resistances setting the path for multidrug resistance. Hence, our findings show that horizontal gene transfer shapes the subsequent emergence of adaptive mutations in core genes. In turn, these mutations further affect the subsequent evolution of resistance by horizontal gene transfer. Given the substantial gene flow within bacterial genomes, interactions between horizontal transfer and point mutations in core genes may be a key to the success of adaptation processes.


Subject(s)
Escherichia coli , Quinolones , Plasmids , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Mutation , Gene Transfer, Horizontal
3.
Curr Opin Microbiol ; 70: 102230, 2022 12.
Article in English | MEDLINE | ID: mdl-36335712

ABSTRACT

Studies of viral adaptation have focused on the selective pressures imposed by hosts. However, there is increasing evidence that interactions between viruses, cells, and other mobile genetic elements are determinant to the success of infections. These interactions are often associated with antagonism and competition, but sometimes involve cooperation or parasitism. We describe two key types of interactions - defense systems and genetic regulation - that allow the partners of the interaction to destroy or control the others. These interactions evolve rapidly by genetic exchanges, including among competing partners. They are sometimes followed by functional diversification. Gene exchanges also facilitate the emergence of cross-talk between elements in the same bacterium. In the end, these processes produce multilayered networks of interactions that shape the outcome of viral infections.


Subject(s)
Bacteriophages , Viruses , Bacteriophages/genetics , Viruses/genetics , Bacteria/genetics , Symbiosis , Interspersed Repetitive Sequences
4.
Philos Trans R Soc Lond B Biol Sci ; 377(1861): 20210234, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35989606

ABSTRACT

Horizontal gene transfer (HGT) drives microbial adaptation but is often under the control of mobile genetic elements (MGEs) whose interests are not necessarily aligned with those of their hosts. In general, transfer is costly to the donor cell while potentially beneficial to the recipients. The diversity and plasticity of cell-MGEs interactions, and those among MGEs, result in complex evolutionary processes where the source, or even the existence of selection for maintaining a function in the genome, is often unclear. For example, MGE-driven HGT depends on cell envelope structures and defense systems, but many of these are transferred by MGEs themselves. MGEs can spur periods of intense gene transfer by increasing their own rates of horizontal transmission upon communicating, eavesdropping, or sensing the environment and the host physiology. This may result in high-frequency transfer of host genes unrelated to the MGE. Here, we review how MGEs drive HGT and how their transfer mechanisms, selective pressures and genomic traits affect gene flow, and therefore adaptation, in microbial populations. The encoding of many adaptive niche-defining microbial traits in MGEs means that intragenomic conflicts and alliances between cells and their MGEs are key to microbial functional diversification. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.


Subject(s)
Gene Transfer, Horizontal , Interspersed Repetitive Sequences , Biological Evolution
5.
Nat Commun ; 13(1): 2561, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538097

ABSTRACT

Bacteria and archaea have developed multiple antiviral mechanisms, and genomic evidence indicates that several of these antiviral systems co-occur in the same strain. Here, we introduce DefenseFinder, a tool that automatically detects known antiviral systems in prokaryotic genomes. We use DefenseFinder to analyse 21000 fully sequenced prokaryotic genomes, and find that antiviral strategies vary drastically between phyla, species and strains. Variations in composition of antiviral systems correlate with genome size, viral threat, and lifestyle traits. DefenseFinder will facilitate large-scale genomic analysis of antiviral defense systems and the study of host-virus interactions in prokaryotes.


Subject(s)
Antiviral Agents , Archaea , Archaea/genetics , Bacteria/genetics , Genomics , Prokaryotic Cells
7.
Nucleic Acids Res ; 49(5): 2655-2673, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33590101

ABSTRACT

Plasmids and temperate phages are key contributors to bacterial evolution. They are usually regarded as very distinct. However, some elements, termed phage-plasmids, are known to be both plasmids and phages, e.g. P1, N15 or SSU5. The number, distribution, relatedness and characteristics of these phage-plasmids are poorly known. Here, we screened for these elements among ca. 2500 phages and 12000 plasmids and identified 780 phage-plasmids across very diverse bacterial phyla. We grouped 92% of them by similarity of gene repertoires to eight defined groups and 18 other broader communities of elements. The existence of these large groups suggests that phage-plasmids are ancient. Their gene repertoires are large, the average element is larger than an average phage or plasmid, and they include slightly more homologs to phages than to plasmids. We analyzed the pangenomes and the genetic organization of each group of phage-plasmids and found the key phage genes to be conserved and co-localized within distinct groups, whereas genes with homologs in plasmids are much more variable and include most accessory genes. Phage-plasmids are a sizeable fraction of the sequenced plasmids (∼7%) and phages (∼5%), and could have key roles in bridging the genetic divide between phages and other mobile genetic elements.


Subject(s)
Bacteria/genetics , Bacteriophages/genetics , Plasmids/genetics , Prophages/genetics , Acinetobacter/genetics , Databases, Nucleic Acid , Enterobacteriaceae/enzymology , Enterobacteriaceae/genetics , Genes, Bacterial , Telomerase/genetics
8.
Mol Biol Evol ; 38(6): 2497-2512, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33570565

ABSTRACT

Bacteriophages (phages) evolve rapidly by acquiring genes from other phages. This results in mosaic genomes. Here, we identify numerous genetic transfers between distantly related phages and aim at understanding their frequency, consequences, and the conditions favoring them. Gene flow tends to occur between phages that are enriched for recombinases, transposases, and nonhomologous end joining, suggesting that both homologous and illegitimate recombination contribute to gene flow. Phage family and host phyla are strong barriers to gene exchange, but phage lifestyle is not. Even if we observe four times more recent transfers between temperate phages than between other pairs, there is extensive gene flow between temperate and virulent phages, and between the latter. These predominantly involve virulent phages with large genomes previously classed as low gene flux, and lead to the preferential transfer of genes encoding functions involved in cell energetics, nucleotide metabolism, DNA packaging and injection, and virion assembly. Such exchanges may contribute to the observed twice larger genomes of virulent phages. We used genetic transfers, which occur upon coinfection of a host, to compare phage host range. We found that virulent phages have broader host ranges and can mediate genetic exchanges between narrow host range temperate phages infecting distant bacterial hosts, thus contributing to gene flow between virulent phages, as well as between temperate phages. This gene flow drastically expands the gene repertoires available for phage and bacterial evolution, including the transfer of functional innovations across taxa.


Subject(s)
Bacteriophages/genetics , Biological Evolution , Gene Transfer, Horizontal , Host-Pathogen Interactions , Bacteriophages/pathogenicity , Gene Flow , Recombination, Genetic
9.
PLoS Genet ; 16(6): e1008866, 2020 06.
Article in English | MEDLINE | ID: mdl-32530914

ABSTRACT

Escherichia coli is mostly a commensal of birds and mammals, including humans, where it can act as an opportunistic pathogen. It is also found in water and sediments. We investigated the phylogeny, genetic diversification, and habitat-association of 1,294 isolates representative of the phylogenetic diversity of more than 5,000 isolates from the Australian continent. Since many previous studies focused on clinical isolates, we investigated mostly other isolates originating from humans, poultry, wild animals and water. These strains represent the species genetic diversity and reveal widespread associations between phylogroups and isolation sources. The analysis of strains from the same sequence types revealed very rapid change of gene repertoires in the very early stages of divergence, driven by the acquisition of many different types of mobile genetic elements. These elements also lead to rapid variations in genome size, even if few of their genes rise to high frequency in the species. Variations in genome size are associated with phylogroup and isolation sources, but the latter determine the number of MGEs, a marker of recent transfer, suggesting that gene flow reinforces the association of certain genetic backgrounds with specific habitats. After a while, the divergence of gene repertoires becomes linear with phylogenetic distance, presumably reflecting the continuous turnover of mobile element and the occasional acquisition of adaptive genes. Surprisingly, the phylogroups with smallest genomes have the highest rates of gene repertoire diversification and fewer but more diverse mobile genetic elements. This suggests that smaller genomes are associated with higher, not lower, turnover of genetic information. Many of these genomes are from freshwater isolates and have peculiar traits, including a specific capsule, suggesting adaptation to this environment. Altogether, these data contribute to explain why epidemiological clones tend to emerge from specific phylogenetic groups in the presence of pervasive horizontal gene transfer across the species.


Subject(s)
Escherichia coli/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Genetic Variation , Genome, Bacterial/genetics , Animals , Animals, Wild/microbiology , Australia , Chickens/microbiology , Drug Resistance, Bacterial/genetics , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Feces/microbiology , Fresh Water/microbiology , Genome Size , Humans , Inflammatory Bowel Diseases/microbiology , Interspersed Repetitive Sequences/genetics , Intestinal Mucosa/microbiology , Meat/microbiology , Molecular Sequence Annotation , Phylogeny , Soil Microbiology , Virulence Factors/genetics , Whole Genome Sequencing
10.
Nat Commun ; 11(1): 1155, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32103021

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Nucleic Acids Res ; 48(D1): D535-D544, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31624845

ABSTRACT

In Archaea and Bacteria, the arrays called CRISPRs for 'clustered regularly interspaced short palindromic repeats' and the CRISPR associated genes or cas provide adaptive immunity against viruses, plasmids and transposable elements. Short sequences called spacers, corresponding to fragments of invading DNA, are stored in-between repeated sequences. The CRISPR-Cas systems target sequences homologous to spacers leading to their degradation. To facilitate investigations of CRISPRs, we developed 12 years ago a website holding the CRISPRdb. We now propose CRISPRCasdb, a completely new version giving access to both CRISPRs and cas genes. We used CRISPRCasFinder, a program that identifies CRISPR arrays and cas genes and determine the system's type and subtype, to process public whole genome assemblies. Strains are displayed either in an alphabetic list or in taxonomic order. The database is part of the CRISPR-Cas++ website which also offers the possibility to analyse submitted sequences and to download programs. A BLAST search against lists of repeats and spacers extracted from the database is proposed. To date, 16 990 complete prokaryote genomes (16 650 bacteria from 2973 species and 340 archaea from 300 species) are included. CRISPR-Cas systems were found in 36% of Bacteria and 75% of Archaea strains. CRISPRCasdb is freely accessible at https://crisprcas.i2bc.paris-saclay.fr/.


Subject(s)
CRISPR-Associated Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Databases, Genetic , Genome, Archaeal , Genome, Bacterial , Software , Archaea/classification , Archaea/enzymology , Archaea/genetics , Bacteria/classification , Bacteria/enzymology , Bacteria/genetics , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Phylogeny
12.
Nat Microbiol ; 5(1): 166-180, 2020 01.
Article in English | MEDLINE | ID: mdl-31768029

ABSTRACT

Clostridioides (formerly Clostridium) difficile is a leading cause of healthcare-associated infections. Although considerable progress has been made in the understanding of its genome, the epigenome of C. difficile and its functional impact has not been systematically explored. Here, we perform a comprehensive DNA methylome analysis of C. difficile using 36 human isolates and observe a high level of epigenomic diversity. We discovered an orphan DNA methyltransferase with a well-defined specificity, the corresponding gene of which is highly conserved across our dataset and in all of the approximately 300 global C. difficile genomes examined. Inactivation of the methyltransferase gene negatively impacts sporulation, a key step in C. difficile disease transmission, and these results are consistently supported by multiomics data, genetic experiments and a mouse colonization model. Further experimental and transcriptomic analyses suggest that epigenetic regulation is associated with cell length, biofilm formation and host colonization. These findings provide a unique epigenetic dimension to characterize medically relevant biological processes in this important pathogen. This study also provides a set of methods for comparative epigenomics and integrative analysis, which we expect to be broadly applicable to bacterial epigenomic studies.


Subject(s)
Clostridioides difficile/enzymology , Clostridioides difficile/physiology , Clostridioides difficile/pathogenicity , DNA Modification Methylases/metabolism , Epigenesis, Genetic , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Clostridioides difficile/genetics , Clostridium Infections/microbiology , Cricetinae , DNA Methylation , DNA Modification Methylases/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Epigenome , Gene Expression Regulation, Bacterial , Genetic Variation , Genome, Bacterial/genetics , Humans , Mice , Mutation , Nucleotide Motifs , Phylogeny , Regulatory Elements, Transcriptional/genetics , Spores, Bacterial/genetics , Spores, Bacterial/physiology , Substrate Specificity
13.
Nucleic Acids Res ; 48(2): 748-760, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31745554

ABSTRACT

Prokaryotes use CRISPR-Cas systems for adaptive immunity, but the reasons for the frequent existence of multiple CRISPRs and cas clusters remain poorly understood. Here, we analysed the joint distribution of CRISPR and cas genes in a large set of fully sequenced bacterial genomes and their mobile genetic elements. Our analysis suggests few negative and many positive epistatic interactions between Cas subtypes. The latter often result in complex genetic organizations, where a locus has a single adaptation module and diverse interference mechanisms that might provide more effective immunity. We typed CRISPRs that could not be unambiguously associated with a cas cluster and found that such complex loci tend to have unique type I repeats in multiple CRISPRs. Many chromosomal CRISPRs lack a neighboring Cas system and they often have repeats compatible with the Cas systems encoded in trans. Phages and 25 000 prophages were almost devoid of CRISPR-Cas systems, whereas 3% of plasmids had CRISPR-Cas systems or isolated CRISPRs. The latter were often compatible with the chromosomal cas clusters, suggesting that plasmids can co-opt the latter. These results highlight the importance of interactions between CRISPRs and cas present in multiple copies and in distinct genomic locations in the function and evolution of bacterial immunity.


Subject(s)
Adaptive Immunity/genetics , CRISPR-Cas Systems/genetics , Genome, Bacterial/immunology , Interspersed Repetitive Sequences/genetics , Bacteriophages/genetics , CRISPR-Cas Systems/immunology , Genome, Bacterial/genetics , Genomics , Interspersed Repetitive Sequences/immunology , Plasmids/genetics , Prokaryotic Cells/immunology , Prophages/genetics
14.
Sci Rep ; 9(1): 11331, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31383878

ABSTRACT

The microbiota of the human gut is a complex and rich community where bacteria and their viruses, the bacteriophages, are dominant. There are few studies on the phage community and no clear standard for isolating them, sequencing and analysing their genomes. Since this makes comparisons between studies difficult, we aimed at defining an easy, low-cost, and reproducible methodology. We analysed five different techniques to isolate phages from human adult faeces and developed an approach to analyse their genomes in order to quantify contamination and classify phage contigs in terms of taxonomy and lifestyle. We chose the polyethylene glycol concentration method to isolate phages because of its simplicity, low cost, reproducibility, and of the high number and diversity of phage sequences that we obtained. We also tested the reproducibility of this method with multiple displacement amplification (MDA) and showed that MDA severely decreases the phage genetic diversity of the samples and the reproducibility of the method. Lastly, we studied the influence of sequencing depth on the analysis of phage diversity and observed the beginning of a plateau for phage contigs at 20,000,000 reads. This work contributes to the development of methods for the isolation of phages in faeces and for their comparative analysis.


Subject(s)
Bacteriophages/genetics , Intestines/virology , Metagenome/genetics , Phylogeny , Bacteriophages/isolation & purification , Computational Biology , Cost-Benefit Analysis , Feces , Genome, Viral , Humans , Metagenomics , Microbiota/genetics
15.
Philos Trans R Soc Lond B Biol Sci ; 374(1772): 20180088, 2019 05 13.
Article in English | MEDLINE | ID: mdl-30905287

ABSTRACT

The absence of CRISPR-Cas systems in more than half of the sequenced bacterial genomes is intriguing, because their role in adaptive immunity and their frequent transfer between species should have made them almost ubiquitous, as is the case in Archaea. Here, we investigate the possibility that the success of CRISPR-Cas acquisition by horizontal gene transfer is affected by the interactions of these systems with the host genetic background and especially with components of double-strand break repair systems (DSB-RS). We first described the distribution of systems specialized in the repair of double-strand breaks in Bacteria: homologous recombination and non-homologous end joining. This allowed us to show that such systems are more often positively or negatively correlated with the frequency of CRISPR-Cas systems than random genes of similar frequency. The detailed analysis of these co-occurrence patterns shows that our method identifies previously known cases of mechanistic interactions between these systems. It also reveals other positive and negative patterns of co-occurrence between DSB-RS and CRISPR-Cas systems. Notably, it shows that the patterns of distribution of CRISPR-Cas systems in Proteobacteria are strongly dependent on the epistatic groups including RecBCD and AddAB. Our results suggest that the genetic background plays an important role in the success of adaptive immunity in different bacterial clades and provide insights to guide further experimental research on the interactions between CRISPR-Cas and DSB-RS. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.


Subject(s)
Bacteria/genetics , CRISPR-Cas Systems/genetics , DNA Repair , DNA, Bacterial/genetics , Gene Transfer, Horizontal
16.
PLoS Genet ; 14(12): e1007862, 2018 12.
Article in English | MEDLINE | ID: mdl-30576310

ABSTRACT

Capsules allow bacteria to colonize novel environments, to withstand numerous stresses, and to resist antibiotics. Yet, even though genetic exchanges with other cells should be adaptive under such circumstances, it has been suggested that capsules lower the rates of homologous recombination and horizontal gene transfer. We analysed over one hundred pan-genomes and thousands of bacterial genomes for the evidence of an association between genetic exchanges (or lack thereof) and the presence of a capsule system. We found that bacteria encoding capsules have larger pan-genomes, higher rates of horizontal gene transfer, and higher rates of homologous recombination in their core genomes. Accordingly, genomes encoding capsules have more plasmids, conjugative elements, transposases, prophages, and integrons. Furthermore, capsular loci are frequent in plasmids, and can be found in prophages. These results are valid for Bacteria, independently of their ability to be naturally transformable. Since we have shown previously that capsules are commonly present in nosocomial pathogens, we analysed their co-occurrence with antibiotic resistance genes. Genomes encoding capsules have more antibiotic resistance genes, especially those encoding efflux pumps, and they constitute the majority of the most worrisome nosocomial bacteria. We conclude that bacteria with capsule systems are more genetically diverse and have fast-evolving gene repertoires, which may further contribute to their success in colonizing novel niches such as humans under antibiotic therapy.


Subject(s)
Bacteria/genetics , Bacterial Capsules/genetics , Genome, Bacterial , Bacteria/classification , DNA Restriction-Modification Enzymes/genetics , Drug Resistance, Bacterial/genetics , Gene Transfer, Horizontal , Homologous Recombination , Interspersed Repetitive Sequences , Phylogeny , Species Specificity
17.
Nat Commun ; 9(1): 4641, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30389939

ABSTRACT

Clémence Genthon and Céline Lopez-Roques, who performed sequencing, were inadvertently omitted from the author list. This has now been corrected in the PDF and HTML versions of the Article.

18.
Nat Commun ; 9(1): 2264, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29891837

ABSTRACT

The emergence of symbiotic interactions has been studied using population genomics in nature and experimental evolution in the laboratory, but the parallels between these processes remain unknown. Here we compare the emergence of rhizobia after the horizontal transfer of a symbiotic plasmid in natural populations of Cupriavidus taiwanensis, over 10 MY ago, with the experimental evolution of symbiotic Ralstonia solanacearum for a few hundred generations. In spite of major differences in terms of time span, environment, genetic background, and phenotypic achievement, both processes resulted in rapid genetic diversification dominated by purifying selection. We observe no adaptation in the plasmid carrying the genes responsible for the ecological transition. Instead, adaptation was associated with positive selection in a set of genes that led to the co-option of the same quorum-sensing system in both processes. Our results provide evidence for similarities in experimental and natural evolutionary transitions and highlight the potential of comparisons between both processes to understand symbiogenesis.


Subject(s)
Directed Molecular Evolution , Evolution, Molecular , Fabaceae/microbiology , Symbiosis/genetics , Adaptation, Physiological/genetics , Cupriavidus/genetics , Cupriavidus/physiology , Gene Regulatory Networks , Gene Transfer, Horizontal , Genes, Bacterial , Genetic Variation , Mimosa/microbiology , Mutation , Plasmids/genetics , Ralstonia solanacearum/genetics , Ralstonia solanacearum/physiology , Symbiosis/physiology
19.
Nucleic Acids Res ; 46(W1): W246-W251, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29790974

ABSTRACT

CRISPR (clustered regularly interspaced short palindromic repeats) arrays and their associated (Cas) proteins confer bacteria and archaea adaptive immunity against exogenous mobile genetic elements, such as phages or plasmids. CRISPRCasFinder allows the identification of both CRISPR arrays and Cas proteins. The program includes: (i) an improved CRISPR array detection tool facilitating expert validation based on a rating system, (ii) prediction of CRISPR orientation and (iii) a Cas protein detection and typing tool updated to match the latest classification scheme of these systems. CRISPRCasFinder can either be used online or as a standalone tool compatible with Linux operating system. All third-party software packages employed by the program are freely available. CRISPRCasFinder is available at https://crisprcas.i2bc.paris-saclay.fr.


Subject(s)
CRISPR-Associated Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Software , CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , Internet
20.
Nat Commun ; 8(1): 2094, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29234047

ABSTRACT

Type II CRISPR-Cas systems introduce double-strand breaks into DNA of invading genetic material and use DNA fragments to acquire novel spacers during adaptation. These breaks can be the substrate of several DNA repair pathways, paving the way for interactions. We report that non-homologous end-joining (NHEJ) and type II-A CRISPR-Cas systems only co-occur once among 5563 fully sequenced prokaryotic genomes. We investigated experimentally the possible molecular interactions using the NHEJ pathway from Bacillus subtilis and the type II-A CRISPR-Cas systems from Streptococcus thermophilus and Streptococcus pyogenes. Our results suggest that the NHEJ system has no effect on CRISPR immunity. On the other hand, we provide evidence for the inhibition of NHEJ repair by the Csn2 protein. Our findings give insights on the complex interactions between CRISPR-Cas systems and repair mechanisms in bacteria, contributing to explain the scattered distribution of CRISPR-Cas systems in bacterial genome.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , DNA End-Joining Repair/genetics , Genome, Bacterial/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , CRISPR-Associated Proteins/genetics , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism , Streptococcus thermophilus/genetics , Streptococcus thermophilus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...