Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS PharmSciTech ; 20(5): 206, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31147791

ABSTRACT

The multi-stage cascade impactor (CI) is the mainstay method for the determination of the aerodynamic particle size distribution (APSD) of aerosols emitted from orally inhaled products (OIPs). CIs are designed to operate at a constant flow rate throughout the measurement process. However, it is necessary to mimic an inhalation maneuver to disperse the powder into an aerosol when testing passive dry powder inhalers (DPIs), which constitute a significant portion of available products in this inhaler class. Methods in the pharmacopeial compendia intended for product quality assurance initiate sampling by applying a vacuum to the measurement apparatus using a timer-operated solenoid valve located downstream of the CI, resulting in a period when the flow rate through the impactor rapidly increases from zero towards the target flow rate. This article provides recommendations for achieving consistent APSD measurements, including selection of the CI, pre-separator, and flow control equipment, as well as reviewing considerations that relate to the shape of the flow rate-sampling time profile. Evidence from comparisons of different DPIs delivering the same active pharmaceutical ingredients (APIs) is indicative that the compendial method for APSD measurement is insensitive as a predictor of pharmacokinetic outcomes. Although inappropriate for product quality testing, guidance is therefore provided towards adopting a more clinically realistic methodology, including the use of an anatomically appropriate inlet and mimicking patient inhalation at the DPI while operating the CI at constant flow rate. Many of these recommendations are applicable to the testing of other OIP classes.


Subject(s)
Aerosols/standards , Dry Powder Inhalers/methods , Equipment Design/methods , Particle Size , Quality Control , Administration, Inhalation , Aerosols/administration & dosage , Aerosols/chemistry , Dry Powder Inhalers/instrumentation , Equipment Design/instrumentation , Humans , Powders , Respiratory System Agents/administration & dosage , Respiratory System Agents/chemistry , Respiratory System Agents/standards , Technology, Pharmaceutical/methods
2.
AAPS PharmSciTech ; 18(8): 3296-3306, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28589305

ABSTRACT

This article reports on results from a two-lab, multiple impactor experiment evaluating the abbreviated impactor measurement (AIM) concept, conducted by the Cascade Impaction Working Group of the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS). The goal of this experiment was to expand understanding of the performance of an AIM-type apparatus based on the Andersen eight-stage non-viable cascade impactor (ACI) for the assessment of inhalation aerosols and sprays, compared with the full-resolution version of that impactor described in the pharmacopeial compendia. The experiment was conducted at two centers with a representative commercially available pressurized metered dose inhaler (pMDI) containing albuterol (salbutamol) as active pharmaceutical ingredient (API). Metrics of interest were total mass (TM) emitted from the inhaler, impactor-sized mass (ISM), as well as the ratio of large particle mass (LPM) to small particle mass (SPM). ISM and the LPM/SPM ratio together comprise the efficient data analysis (EDA) metrics. The results of the comparison demonstrated that in this study, the AIM approach had adequate discrimination to detect changes in the mass median aerodynamic diameter (MMAD) of the ACI-sampled aerodynamic particle size distribution (APSD), and therefore could be employed for routine product quality control (QC). As with any test method considered for inclusion in a regulatory filing, the transition from an ACI (used in development) to an appropriate AIM/EDA methodology (used in QC) should be evaluated and supported by data on a product-by-product basis.


Subject(s)
Albuterol/analysis , Metered Dose Inhalers/standards , Particle Size , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/standards , Administration, Inhalation , Aerosols , Albuterol/chemistry , Bronchodilator Agents/analysis , Bronchodilator Agents/chemistry , Equipment Design/methods , Equipment Design/standards , Metered Dose Inhalers/trends , Nebulizers and Vaporizers/standards , Nebulizers and Vaporizers/trends , Quality Control
3.
AAPS PharmSciTech ; 18(2): 451-461, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27068528

ABSTRACT

The performance of two quality control (QC) tests for aerodynamic particle size distributions (APSD) of orally inhaled drug products (OIPs) is compared. One of the tests is based on the fine particle dose (FPD) metric currently expected by the European regulators. The other test, called efficient data analysis (EDA), uses the ratio of large particle mass to small particle mass (LPM/SPM), along with impactor sized mass (ISM), to detect changes in APSD for QC purposes. The comparison is based on analysis of APSD data from four products (two different pressurized metered dose inhalers (MDIs) and two dry powder inhalers (DPIs)). It is demonstrated that in each case, EDA is able to detect shifts and abnormalities that FPD misses. The lack of sensitivity on the part of FPD is due to its "aggregate" nature, since FPD is a univariate measure of all particles less than about 5 µm aerodynamic diameter, and shifts or changes within the range encompassed by this metric may go undetected. EDA is thus shown to be superior to FPD for routine control of OIP quality. This finding augments previously reported superiority of EDA compared with impactor stage groupings (favored by US regulators) for incorrect rejections (type I errors) when incorrect acceptances (type II errors) were adjusted to the same probability for both approaches. EDA is therefore proposed as a method of choice for routine quality control of OIPs in both European and US regulatory environments.


Subject(s)
Aerosols/chemistry , Dry Powder Inhalers/methods , Materials Testing/methods , Powders/chemistry , Statistics as Topic/methods , Technology, Pharmaceutical/methods , Administration, Inhalation , Administration, Oral , Metered Dose Inhalers , Particle Size , Quality Control
4.
AAPS PharmSciTech ; 12(1): 312-22, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21286882

ABSTRACT

Over the lifecycle of an orally inhaled product (OIP), multi-stage cascade impactor (CI) measurements are used for different purposes and to address different questions. Full-resolution CIs can provide important information during product development and are widely used but are time- and resource-intensive, highly variable, and suboptimal for OIP quality control (QC) testing. By contrast, Efficient Data Analysis (EDA) combined with Abbreviated Impactor Measurement (AIM) systems pertinent either for QC and-possibly-for adult Human Respiratory Tract (pHRT) has been introduced for OIP performance assessment during and post-development. This article summarizes available evidence and discusses a strategy for using either abbreviated or full-resolution CI systems depending on the purpose of the measurement, such that adequate, accurate, and efficient testing of aerodynamic particle size distribution (APSD) of OIPs can be achieved throughout the lifecycle of a product. Under these proposals, a comprehensive testing program should initially be conducted by full-resolution CI in OIP development to ascertain the product's APSD. Subsequently, correlations should be established from the selected AIM CIs to the corresponding full-resolution system, ideally developing specifications common to both techniques. In the commercial phase, it should be possible to release product using AIM/EDA, keeping the full-resolution CI for investigations, change control, and trouble-shooting, thus optimizing resources for APSD characterization throughout the product lifecycle. If an in vitro-in vivo relationship is established and clinically relevant sizes are known, an AIM-pHRT could serve as a quick indicator that clinically relevant fractions have not changed and also, in the management of post-approval changes.


Subject(s)
Materials Testing/methods , Nebulizers and Vaporizers/standards , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/standards , Respiratory System Agents/analysis , Respiratory System Agents/standards , Administration, Inhalation , Adult , Equipment Design , Humans , Particle Size , Quality Control , Respiratory System , Respiratory System Agents/blood , Technology, Pharmaceutical , Weights and Measures
6.
AAPS PharmSciTech ; 10(4): 1276-85, 2009.
Article in English | MEDLINE | ID: mdl-19882251

ABSTRACT

This study of aerodynamic mass-weighted particle size distribution (APSD) data from orally inhaled products (OIPs) investigated whether a set of simpler (than currently used) metrics may be adequate to detect changes in APSD for quality control (QC) purposes. A range of OIPs was examined, and correlations between mass median aerodynamic diameter and the ratio of large particle mass (LPM) to small particle mass (SPM) were calculated. For an Andersen cascade impactor, the LPM combines the mass associated with particle sizes from impactor stage 1 to a product-specific boundary size; SPM combines the mass of particles from that boundary through to terminal filter. The LPM-SPM boundary should be chosen during development based on the full-resolution impactor results so as to maximize the sensitivity of the LPM/SPM ratio to meaningful changes in quality. The LPM/SPM ratio along with the impactor-sized mass (ISM) are by themselves sufficient to detect changes in central tendency and area under the APSD curve, which are key in vitro quality attributes for OIPs. Compared to stage groupings, this two-metric approach provides better intrinsic precision, in part due to having adequate mass and consequently better ability to detect changes in APSD and ISM, suggesting that this approach should be a preferred QC tool. Another advantage is the possibility to obtain these metrics from the abbreviated impactor measurements (AIM) rather than from full-resolution multistage impactors. Although the boundary is product specific, the testing could be accomplished with a basic AIM system which can meet the needs of most or all OIPs.


Subject(s)
Aerosols/standards , Technology, Pharmaceutical/standards , Administration, Inhalation , Nebulizers and Vaporizers , Particle Size , Quality Control , Regression Analysis , Technology, Pharmaceutical/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...