Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 10(30): e2300055, 2023 10.
Article in English | MEDLINE | ID: mdl-37712185

ABSTRACT

Bioprinting is a booming technology, with numerous applications in tissue engineering and regenerative medicine. However, most biomaterials designed for bioprinting depend on the use of sacrificial baths and/or non-physiological stimuli. Printable biomaterials also often lack tunability in terms of their composition and mechanical properties. To address these challenges, the authors introduce a new biomaterial concept that they have termed "clickable dynamic bioinks". These bioinks use dynamic hydrogels that can be printed, as well as chemically modified via click reactions to fine-tune the physical and biochemical properties of printed objects after printing. Specifically, using hyaluronic acid (HA) as a polymer of interest, the authors investigate the use of a boronate ester-based crosslinking reaction to produce dynamic hydrogels that are printable and cytocompatible, allowing for bioprinting. The resulting dynamic bioinks are chemically modified with bioorthogonal click moieties to allow for a variety of post-printing modifications with molecules carrying the complementary click function. As proofs of concept, the authors perform various post-printing modifications, including adjusting polymer composition (e.g., HA, chondroitin sulfate, and gelatin) and stiffness, and promoting cell adhesion via adhesive peptide immobilization (i.e., RGD peptide). The results also demonstrate that these modifications can be controlled over time and space, paving the way for 4D bioprinting applications.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Biocompatible Materials/chemistry , Tissue Engineering/methods , Hydrogels/chemistry , Polymers , Bioprinting/methods , Hyaluronic Acid/chemistry
2.
Jpn Dent Sci Rev ; 59: 38-47, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36880060

ABSTRACT

The Notch pathway is an evolutionarily preserved signaling pathway involved in a variety of vital cell functions. Additionally, it is one of the key regulators of inflammation, and controls the differentiation and function of different cells. Moreover, it was found to be involved in skeletal development and bone remodeling process. This review provides an overview of the involvement of the Notch signaling pathway in the pathogenesis of alveolar bone resorption in different forms of pathological conditions such as apical periodontitis, periodontal disease, and peri-implantitis. In vitro and in vivo evidence have confirmed the involvement of Notch signaling in alveolar bone homeostasis. Nonetheless, Notch signaling system, along with complex network of different biomolecules are involved in pathological process of bone resorption in apical periodontitis, periodontitis, and peri-implantitis. In this regard, there is a substantial interest to control the activity of this pathway in the treatment of disorders associated with its dysregulation. This review provides knowledge on Notch signaling and outlines its functions in alveolar bone homeostasis and alveolar bone resorption. Further investigations are needed to determine whether inhibition of the Notch signaling pathways might be beneficial and safe as a novel approach in the treatment of these pathological conditions.

3.
Biomaterials ; 296: 122091, 2023 05.
Article in English | MEDLINE | ID: mdl-36947892

ABSTRACT

Osteoarthritis (OA) is the most common debilitating joint disease, yet there is no curative treatment for OA to date. Delivering mesenchymal stromal cells (MSCs) as therapeutic cells to mitigate the inflammatory symptoms associated with OA is attracting increasing attention. In principle, MSCs could respond to the pro-inflammatory microenvironment of an OA joint by the secretion of anti-inflammatory, anti-apoptotic, immunomodulatory and pro-regenerative factors, therefore limiting pain, as well as the disease development. However, the microenvironment of MSCs is known to greatly affect their survival and bioactivity, and using tailored biomaterial scaffolds could be key to the success of intra-articular MSC-based therapies. The aim of this review is to identify and discuss essential characteristics of biomaterial scaffolds to best promote MSC secretory functions in the context of OA. First, a brief introduction to the OA physiopathology is provided, followed by an overview of the MSC secretory functions, as well as the current limitations of MSC-based therapy. Then, we review the current knowledge on the effects of cell-material interactions on MSC secretion. These considerations allow us to define rational guidelines for next-generation biomaterial design to improve the MSC-based therapy of OA.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Osteoarthritis , Humans , Osteoarthritis/therapy , Osteoarthritis/pathology , Mesenchymal Stem Cells/pathology , Biocompatible Materials/therapeutic use , Anti-Inflammatory Agents
4.
Bioact Mater ; 24: 438-449, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36632500

ABSTRACT

The cellular microenvironment plays a major role in the biological functions of cells. Thus, biomaterials, especially hydrogels, which can be design to mimic the cellular microenvironment, are being increasingly used for cell encapsulation, delivery, and 3D culture, with the hope of controlling cell functions. Yet, much remains to be understood about the effects of cell-material interactions, and advanced synthetic strategies need to be developed to independently control the mechanical and biochemical properties of hydrogels. To address this challenge, we designed a new hyaluronic acid (HA)-based hydrogel platform using a click and bioorthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) reaction. This approach facilitates the synthesis of hydrogels that are easy to synthesize and sterilize, have minimal swelling, are stable long term, and are cytocompatible. It provides bioorthogonal HA gels over an uncommonly large range of stiffness (0.5-45 kPa), all forming within 1-15 min. More importantly, our approach offers a versatile one-pot procedure to independently tune the hydrogel composition (e.g., polymer and adhesive peptides). Using this platform, we investigate the independent effects of polymer type, stiffness, and adhesion on the secretory properties of human adipose-derived stromal cells (hASCs) and demonstrate that HA can enhance the secretion of immunomodulatory factors by hASCs.

5.
Front Bioeng Biotechnol ; 9: 658853, 2021.
Article in English | MEDLINE | ID: mdl-33968916

ABSTRACT

Autologous bone grafts (BGs) remain the reference grafting technique in various clinical contexts of bone grafting procedures despite their numerous peri- and post-operative limitations. The use of allogeneic bone is a viable option for overcoming these limitations, as it is reliable and it has been widely utilized in various forms for decades. However, the lack of versatility of conventional allogeneic BGs (e.g., blocks, powders) limits their potential for use with irregular or hard-to-reach bone defects. In this context, a ready- and easy-to-use partially demineralized allogeneic BG in a paste form has been developed, with the aim of facilitating such bone grafting procedures. The regenerative properties of this bone paste (BP) was assessed and compared to that of a syngeneic BG in a pre-clinical model of intramembranous bone healing in critical size defects in rat calvaria. The microcomputed tridimensional quantifications and the histological observations at 7 weeks after the implantation revealed that the in vivo bone regeneration of critical-size defects (CSDs) filled with the BP was similar to syngeneic bone grafts (BGs). Thus, this ready-to-use, injectable, and moldable partially demineralized allogeneic BP, displaying equivalent bone healing capacity than the "gold standard," may be of particular clinical relevance in the context of oral and maxillofacial bone reconstructions.

6.
Sci Rep ; 11(1): 4907, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33649345

ABSTRACT

In skeletal surgical procedures, bone regeneration in irregular and hard-to-reach areas may present clinical challenges. In order to overcome the limitations of traditional autologous bone grafts and bone substitutes, an extrudable and easy-to-handle innovative partially demineralized allogenic bone graft in the form of a paste has been developed. In this study, the regenerative potential of this paste was assessed and compared to its clinically used precursor form allogenic bone particles. Compared to the particular bone graft, the bone paste allowed better attachment of human mesenchymal stromal cells and their commitment towards the osteoblastic lineage, and it induced a pro-regenerative phenotype of human monocytes/macrophages. The bone paste also supported bone healing in vivo in a guide bone regeneration model and, more interestingly, exhibited a substantial bone-forming ability when implanted in a critical-size defect model in rat calvaria. Thus, these findings indicate that this novel partially demineralized allogeneic bone paste that combines substantial bone healing properties and rapid and ease-of-use may be a promising alternative to allogeneic bone grafts for bone regeneration in several clinical contexts of oral and maxillofacial bone grafting.


Subject(s)
Bone Cements/pharmacology , Bone Matrix/transplantation , Osteogenesis/drug effects , Wound Healing , Animals , Bone Regeneration , Bone Substitutes , Humans , Male , Mesenchymal Stem Cells , Monocytes , Rats , Rats, Inbred Lew
7.
ACS Biomater Sci Eng ; 6(1): 553-563, 2020 01 13.
Article in English | MEDLINE | ID: mdl-32158932

ABSTRACT

Finding alternative strategies for the regeneration of craniofacial bone defects (CSD), such as combining a synthetic ephemeral calcium phosphate (CaP) implant and/or active substances and cells, would contribute to solving this reconstructive roadblock. However, CaP's architectural features (i.e., architecture and composition) still need to be tailored, and the use of processed stem cells and synthetic active substances (e.g., recombinant human bone morphogenetic protein 2) drastically limits the clinical application of such approaches. Focusing on solutions that are directly transposable to the clinical setting, biphasic calcium phosphate (BCP) and carbonated hydroxyapatite (CHA) 3D-printed disks with a triply periodic minimal structure (TPMS) were implanted in calvarial critical-sized defects (rat model) with or without addition of total bone marrow (TBM). Bone regeneration within the defect was evaluated, and the outcomes were compared to a standard-care procedure based on BCP granules soaked with TBM (positive control). After 7 weeks, de novo bone formation was significantly greater in the CHA disks + TBM group than in the positive controls (3.33 mm3 and 2.15 mm3, respectively, P=0.04). These encouraging results indicate that both CHA and TPMS architectures are potentially advantageous in the repair of CSDs and that this one-step procedure warrants further clinical investigation.


Subject(s)
Bone Regeneration , Calcium Phosphates , Animals , Bone and Bones , Osteogenesis , Printing, Three-Dimensional , Rats
9.
Front Physiol ; 7: 243, 2016.
Article in English | MEDLINE | ID: mdl-27445836

ABSTRACT

The ion influx isotherms obtained by measuring unidirectional influx across root membranes with radioactive or stable tracers are mostly interpreted by enzyme-substrate-like modeling. However, recent analyses from ion transporter mutants clearly demonstrate the inadequacy of the conventional interpretation of ion isotherms. Many genetically distinct carriers are involved in the root catalytic function. Parameters Vmax and Km deduced from this interpretation cannot therefore be regarded as microscopic parameters of a single transporter, but are instead macroscopic parameters (V[Formula: see text] and K[Formula: see text], apparent maximum velocity and affinity constant) that depend on weighted activities of multiple transporters along the root. The flow-force interpretation based on the thermodynamic principle of irreversible processes is an alternative macroscopic modeling approach for ion influx isotherms in which macroscopic parameters Lj (overall conductance of the root system for the substrate j) and πj (thermodynamic parameter when Jj = 0) have a straightforward meaning with respect to the biological sample studied. They characterize the efficiency of the entire root catalytic structure without deducing molecular characteristics. Here we present the basic principles of this theory and how its use can be tested and improved by changing root pre- and post-wash procedures before influx measurements in order to come as close as possible to equilibrium conditions. In addition, the constant values of Vm and Km in the Michaelis-Menten (MM) formalism of enzyme-substrate interpretation do not reflect variations in response to temperature, nutrient status or nutrient regimes. The linear formalism of the flow-force approach, which integrates temperature effect on nutrient uptake, could usefully replace MM formalism in the 1-3-dimension models of plants and phytoplankton. This formalism offers a simplification of parametrization to help find more realistic analytical expressions and numerical solution for root nutrient uptake.

10.
Int J Offender Ther Comp Criminol ; 47(3): 248-52, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12808736
SELECTION OF CITATIONS
SEARCH DETAIL
...