Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(1): 105578, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110036

ABSTRACT

In Gram-positive bacteria, cell wall polysaccharides (CWPS) play critical roles in bacterial cell wall homeostasis and bacterial interactions with their immediate surroundings. In lactococci, CWPS consist of two components: a conserved rhamnan embedded in the peptidoglycan layer and a surface-exposed polysaccharide pellicle (PSP), which are linked together to form a large rhamnose-rich CWPS (Rha-CWPS). PSP, whose structure varies from strain to strain, is a receptor for many bacteriophages infecting lactococci. Here, we examined the first two steps of PSP biosynthesis, using in vitro enzymatic tests with lipid acceptor substrates combined with LC-MS analysis, AlfaFold2 modeling of protein 3D-structure, complementation experiments, and phage assays. We show that the PSP repeat unit is assembled on an undecaprenyl-monophosphate (C55P) lipid intermediate. Synthesis is initiated by the WpsA/WpsB complex with GlcNAc-P-C55 synthase activity and the PSP precursor GlcNAc-P-C55 is then elongated by specific glycosyltransferases that vary among lactococcal strains, resulting in PSPs with diverse structures. Also, we engineered the PSP biosynthesis pathway in lactococci to obtain a chimeric PSP structure, confirming the predicted glycosyltransferase specificities. This enabled us to highlight the importance of a single sugar residue of the PSP repeat unit in phage recognition. In conclusion, our results support a novel pathway for PSP biosynthesis on a lipid-monophosphate intermediate as an extracellular modification of rhamnan, unveiling an assembly machinery for complex Rha-CWPS with structural diversity in lactococci.


Subject(s)
Cell Wall , Lactococcus , Polysaccharides, Bacterial , Rhamnose , Bacterial Proteins/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Glycosyltransferases/metabolism , Lactococcus/classification , Lactococcus/cytology , Lactococcus/metabolism , Lactococcus/virology , Lipids , Peptidoglycan/metabolism , Polysaccharides, Bacterial/metabolism , Protein Conformation , Rhamnose/metabolism , Substrate Specificity , Bacteriophages/physiology
2.
Nucleic Acids Res ; 50(20): 11415-11425, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36350642

ABSTRACT

Xenobiotic nucleic acids (XNAs) offer tremendous potential for synthetic biology, biotechnology, and molecular medicine but their ability to mimic nucleic acids still needs to be explored. Here, to study the ability of XNA oligonucleotides to mimic tRNA, we synthesized three L-Ala-tXNAs analogs. These molecules were used in a non-ribosomal peptide synthesis involving a bacterial Fem transferase. We compared the ability of this enzyme to use amino-acyl tXNAs containing 1',5'-anhydrohexitol (HNA), 2'-fluoro ribose (2'F-RNA) and 2'-fluoro arabinose. L-Ala-tXNA containing HNA or 2'F-RNA were substrates of the Fem enzyme. The synthesis of peptidyl-XNA and the resolution of their structures in complex with the enzyme show the impact of the XNA on protein binding. For the first time we describe functional tXNA in an in vitro assay. These results invite to test tXNA also as substitute for tRNA in translation.


Subject(s)
Amino Acids , RNA, Transfer, Ala , Nucleic Acids/chemistry , Oligonucleotides/chemistry , Peptides , RNA, Transfer, Ala/chemistry
3.
Antibiotics (Basel) ; 11(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36139968

ABSTRACT

New inhibitors of the bacterial transferase MraY from Aquifex aeolicus (MraYAA), based on the aminoribosyl uridine central core of known natural MraY inhibitors, have been designed to generate interaction of their oxadiazole linker with the key amino acids (H324 or H325) of the enzyme active site, as observed for the highly potent inhibitors carbacaprazamycin, muraymycin D2 and tunicamycin. A panel of ten compounds was synthetized notably thanks to a robust microwave-activated one-step sequence for the synthesis of the oxadiazole ring that involved the O-acylation of an amidoxime and subsequent cyclization. The synthetized compounds, with various hydrophobic substituents on the oxadiazole ring, were tested against the MraYAA transferase activity. Although with poor antibacterial activity, nine out of the ten compounds revealed the inhibition of the MraYAA activity in the range of 0.8 µM to 27.5 µM.

4.
Comput Struct Biotechnol J ; 20: 2360-2371, 2022.
Article in English | MEDLINE | ID: mdl-35664230

ABSTRACT

Increasing resistance to common antibiotics is becoming a major challenge that requires the development of new antibacterial agents. Peptidoglycan is an essential heteropolymer of the bacterial envelope that ensures the integrity and shape of all bacteria and is also an important target for antibiotics. The biosynthesis of peptidoglycan depends on a lipid carrier, undecaprenyl phosphate. As a byproduct of peptidoglycan polymerization, the lipid carrier is released as undecaprenyl pyrophosphate, which must be recycled to allow new polymerization cycles. To this end, it undergoes a dephosphorylation process catalyzed by the membrane phosphatase BacA, which is specific and highly conserved in bacteria. In the present study, we identified small molecules displaying inhibitory potency towards BacA. We began by preparing a commercial compound library, followed by high-throughput virtual screening by ensemble docking using the 3D structure of BacA and molecular dynamics snapshots to account for the flexibility of the protein. Of 83 compounds computationally selected and tested in a biochemical assay, one sulfamoylthiophene molecule showed significant inhibition of the undecaprenyl pyrophosphate dephosphorylation activity catalyzed by BacA. Subsequently, an additional 33 scaffold analogs were selected and acquired, of which 6 compounds exhibited BacA inhibition. The IC50 values of these compounds ranged from 42 to 366 µM. In addition, significant antibacterial activity against Escherichia coli was observed in TolC/PAP2-depleted strains. We believe that the overall strategy followed in this study and the identified class of inhibitors provide a solid foundation for the further development of potent BacA-targeted inhibitors and the discovery of novel antibacterial compounds.

5.
Antibiotics (Basel) ; 10(9)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34572691

ABSTRACT

The misuse of antibiotics during the last decades led to the emergence of multidrug resistant pathogenic bacteria. This phenomenon constitutes a major public health issue. Consequently, the discovery of new antibacterials in the short term is crucial. Colicins, due to their antibacterial properties, thus constitute good candidates. These toxin proteins, produced by E. coli to kill enteric relative competitors, exhibit cytotoxicity through ionophoric activity or essential macromolecule degradation. Among the 25 colicin types known to date, colicin M (ColM) is the only one colicin interfering with peptidoglycan biosynthesis. Accordingly, ColM develops its lethal activity in E. coli periplasm by hydrolyzing the last peptidoglycan precursor, lipid II, into two dead-end products, thereby leading to cell lysis. Since the discovery of its unusual mode of action, several ColM orthologs have also been identified based on sequence alignments; all of the characterized ColM-like proteins display the same enzymatic activity of lipid II degradation and narrow antibacterial spectra. This publication aims at being an exhaustive review of the current knowledge on this new family of antibacterial enzymes as well as on their potential use as food preservatives or therapeutic agents.

6.
Org Biomol Chem ; 19(26): 5844-5866, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34115086

ABSTRACT

The straightforward synthesis of aminoribosyl uridines substituted by a 5'-methylene-urea is described. Their convergent synthesis involves the urea formation from various activated amides and an azidoribosyl uridine substituted at the 5' position by an aminomethyl group. This common intermediate resulted from the diastereoselective glycosylation of a phthalimido uridine derivative with a ribosyl fluoride as a ribosyl donor. The inhibition of the MraY transferase activity by the synthetized 11 urea-containing inhibitors was evaluated and 10 compounds revealed MraY inhibition with IC50 ranging from 1.9 µM to 16.7 µM. Their antibacterial activity was also evaluated on a panel of Gram-positive and Gram-negative bacteria. Four compounds exhibited a good activity against Gram-positive bacterial pathogens with MIC ranging from 8 to 32 µg mL-1, including methicillin resistant Staphylococcus aureus (MRSA) and Enterococcus faecium. Interestingly, one compound also revealed antibacterial activity against Pseudomonas aeruginosa with MIC equal to 64 µg mL-1. Docking experiments predicted two modes of positioning of the active compounds urea chain in different hydrophobic areas (HS2 and HS4) within the MraY active site from Aquifex aeolicus. However, molecular dynamics simulations showed that the urea chain adopts a binding mode similar to that observed in structural model and targets the hydrophobic area HS2.


Subject(s)
Anti-Bacterial Agents
7.
Front Microbiol ; 12: 676596, 2021.
Article in English | MEDLINE | ID: mdl-34017319

ABSTRACT

The cell surface of Gram-negative bacteria usually exhibits a net negative charge mostly conferred by lipopolysaccharides (LPS). This property sensitizes bacterial cells to cationic antimicrobial peptides, such as polymyxin B, by favoring their binding to the cell surface. Gram-negative bacteria can modify their surface to counteract these compounds such as the decoration of their LPS by positively charged groups. For example, in Escherichia coli and Salmonella, EptA and ArnT add amine-containing groups to the lipid A moiety. In contrast, LpxT enhances the net negative charge by catalyzing the synthesis of tri-phosphorylated lipid A, whose function is yet unknown. Here, we report that E. coli has the intrinsic ability to resist polymyxin B upon the simultaneous activation of the two component regulatory systems PhoPQ and PmrAB by intricate environmental cues. Among many LPS modifications, only EptA- and ArnT-dependent decorations were required for polymyxin B resistance. Conversely, the acquisition of polymyxin B resistance compromised the innate resistance of E. coli to deoxycholate, a major component of bile. The inhibition of LpxT by PmrR, under PmrAB-inducing conditions, specifically accounted for the acquired susceptibility to deoxycholate. We also report that the kinetics of intestinal colonization by the E. coli lpxT mutant was impaired as compared to wild-type in a mouse model of infection and that lpxT was upregulated at the temperature of the host. Together, these findings highlight an important function of LpxT and suggest that a tight equilibrium between EptA- and LpxT-dependent decorations, which occur at the same position of lipid A, is critical for the life style of E. coli.

8.
J Biol Chem ; 295(52): 18256-18265, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33109614

ABSTRACT

Peptidoglycan (PG) is an essential constituent of the bacterial cell wall. During cell division, the machinery responsible for PG synthesis localizes mid-cell, at the septum, under the control of a multiprotein complex called the divisome. In Escherichia coli, septal PG synthesis and cell constriction rely on the accumulation of FtsN at the division site. Interestingly, a short sequence of FtsN (Leu75-Gln93, known as EFtsN) was shown to be essential and sufficient for its functioning in vivo, but what exactly this sequence is doing remained unknown. Here, we show that EFtsN binds specifically to the major PG synthase PBP1b and is sufficient to stimulate its biosynthetic glycosyltransferase (GTase) activity. We also report the crystal structure of PBP1b in complex with EFtsN, which demonstrates that EFtsN binds at the junction between the GTase and UB2H domains of PBP1b. Interestingly, mutations to two residues (R141A/R397A) within the EFtsN-binding pocket reduced the activation of PBP1b by FtsN but not by the lipoprotein LpoB. This mutant was unable to rescue the ΔponB-ponAts strain, which lacks PBP1b and has a thermosensitive PBP1a, at nonpermissive temperature and induced a mild cell-chaining phenotype and cell lysis. Altogether, the results show that EFtsN interacts with PBP1b and that this interaction plays a role in the activation of its GTase activity by FtsN, which may contribute to the overall septal PG synthesis and regulation during cell division.


Subject(s)
Cell Wall/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Membrane Proteins/metabolism , Penicillin-Binding Proteins/metabolism , Peptidoglycan Glycosyltransferase/metabolism , Peptidoglycan/metabolism , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Membrane Proteins/genetics , Penicillin-Binding Proteins/genetics , Peptidoglycan Glycosyltransferase/genetics , Protein Binding , Serine-Type D-Ala-D-Ala Carboxypeptidase/genetics
9.
J Bacteriol ; 202(23)2020 11 04.
Article in English | MEDLINE | ID: mdl-32958631

ABSTRACT

Colicin M is an enzymatic bacteriocin produced by some Escherichia coli strains which provokes cell lysis of competitor strains by hydrolysis of the cell wall peptidoglycan undecaprenyl-PP-MurNAc(-pentapeptide)-GlcNAc (lipid II) precursor. The overexpression of a gene, cbrA (formerly yidS), was shown to protect E. coli cells from the deleterious effects of this colicin, but the underlying resistance mechanism was not established. We report here that a major structural modification of the undecaprenyl-phosphate carrier lipid and of its derivatives occurred in membranes of CbrA-overexpressing cells, which explains the acquisition of resistance toward this bacteriocin. Indeed, a main fraction of these lipids, including the lipid II peptidoglycan precursor, now displayed a saturated isoprene unit at the α-position, i.e., the unit closest to the colicin M cleavage site. Only unsaturated forms of these lipids were normally detectable in wild-type cells. In vitro and in vivo assays showed that colicin M did not hydrolyze α-saturated lipid II, clearly identifying this substrate modification as the resistance mechanism. These saturated forms of undecaprenyl-phosphate and lipid II remained substrates of the different enzymes participating in peptidoglycan biosynthesis and carrier lipid recycling, allowing this colicin M-resistance mechanism to occur without affecting this essential pathway.IMPORTANCE Overexpression of the chromosomal cbrA gene allows E. coli to resist colicin M (ColM), a bacteriocin specifically hydrolyzing the undecaprenyl-PP-MurNAc(-pentapeptide)-GlcNAc (lipid II) peptidoglycan precursor of targeted cells. This resistance results from a CbrA-dependent modification of the precursor structure, i.e., reduction of the α-isoprenyl bond of C55-carrier lipid moiety that is proximal to ColM cleavage site. This modification, observed here for the first time in eubacteria, annihilates the ColM activity without affecting peptidoglycan biogenesis. These data, which further increase our knowledge of the substrate specificity of this colicin, highlight the capability of E. coli to generate reduced forms of C55-carrier lipid and its derivatives. Whether the function of this modification is only relevant with respect to ColM resistance is now questioned.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colicins/pharmacology , Drug Resistance, Bacterial , Escherichia coli Proteins/metabolism , Escherichia coli/drug effects , Escherichia coli/metabolism , Flavoproteins/metabolism , Peptidoglycan/metabolism , Polyisoprenyl Phosphates/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Flavoproteins/genetics , Peptidoglycan/chemistry , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Uridine Diphosphate N-Acetylmuramic Acid/metabolism
10.
Sci Rep ; 10(1): 13209, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32764655

ABSTRACT

Ubiquitous PAP2 lipid phosphatases are involved in a wide array of central physiological functions. PgpB from Escherichia coli constitutes the archetype of this subfamily of membrane proteins. It displays a dual function by catalyzing the biosynthesis of two essential lipids, the phosphatidylglycerol (PG) and the undecaprenyl phosphate (C55-P). C55-P constitutes a lipid carrier allowing the translocation of peptidoglycan subunits across the plasma membrane. PG and C55-P are synthesized in a redundant manner by PgpB and other PAP2 and/or unrelated membrane phosphatases. Here, we show that PgpB is the sole, among these multiple phosphatases, displaying this dual activity. The inactivation of PgpB does not confer any apparent growth defect, but its inactivation together with another PAP2 alters the cell envelope integrity increasing the susceptibility to small hydrophobic compounds. Evidence is also provided of an interplay between PAP2s and the peptidoglycan polymerase PBP1A. In contrast to PGP hydrolysis, which relies on a His/Asp/His catalytic triad of PgpB, the mechanism of C55-PP hydrolysis appeared as only requiring the His/Asp diad, which led us to hypothesize distinct processes. Moreover, thermal stability analyses highlighted a substantial structural change upon phosphate binding by PgpB, supporting an induced-fit model of action.


Subject(s)
Cell Membrane/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Metabolic Networks and Pathways , Phosphatidate Phosphatase/metabolism , Amino Acid Motifs , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Knockout Techniques , Genetic Complementation Test , Hydrolysis , Membrane Proteins/metabolism , Models, Molecular , Penicillin-Binding Proteins/metabolism , Peptidoglycan Glycosyltransferase/metabolism , Phosphatidate Phosphatase/genetics , Phosphatidylglycerols/metabolism , Polyisoprenyl Phosphates/metabolism , Substrate Specificity , Thermotolerance
11.
Antibiotics (Basel) ; 9(7)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630634

ABSTRACT

Peptidoglycan (PG) is an essential polymer of the bacterial cell wall and a major antibacterial target. Its synthesis requires glycosyltransferase (GTase) and transpeptidase enzymes that, respectively, catalyze glycan chain elongation and their cross-linking to form the protective sacculus of the bacterial cell. The GTase domain of bifunctional penicillin-binding proteins (PBPs) of class A, such as Escherichia coli PBP1b, belong to the GTase 51 family. These enzymes play an essential role in PG synthesis, and their specific inhibition by moenomycin was shown to lead to bacterial cell death. In this work, we report that the aminosterol squalamine and mimic compounds present an unexpected mode of action consisting in the inhibition of the GTase activity of the model enzyme PBP1b. In addition, selected compounds were able to specifically displace the lipid II from the active site in a fluorescence anisotropy assay, suggesting that they act as competitive inhibitors.

12.
PLoS Pathog ; 15(9): e1007972, 2019 09.
Article in English | MEDLINE | ID: mdl-31487328

ABSTRACT

The biogenesis of bacterial cell-envelope polysaccharides requires the translocation, across the plasma membrane, of sugar sub-units that are produced inside the cytoplasm. To this end, the hydrophilic sugars are anchored to a lipid phosphate carrier (undecaprenyl phosphate (C55-P)), yielding membrane intermediates which are translocated to the outer face of the membrane. Finally, the glycan moiety is transferred to a nascent acceptor polymer, releasing the carrier in the "inactive" undecaprenyl pyrophosphate (C55-PP) form. Thus, C55-P is generated through the dephosphorylation of C55-PP, itself arising from either de novo synthesis or recycling. Two types of integral membrane C55-PP phosphatases were described: BacA enzymes and a sub-group of PAP2 enzymes (type 2 phosphatidic acid phosphatases). The human pathogen Helicobacter pylori does not contain BacA homologue but has four membrane PAP2 proteins: LpxE, LpxF, HP0350 and HP0851. Here, we report the physiological role of HP0851, renamed HupA, via multiple and complementary approaches ranging from a detailed biochemical characterization to the assessment of its effect on cell envelope metabolism and microbe-host interactions. HupA displays a dual function as being the main C55-PP pyrophosphatase (UppP) and phosphatidylglycerol phosphate phosphatase (PGPase). Although not essential in vitro, HupA was essential in vivo for stomach colonization. In vitro, the remaining UppP activity was carried out by LpxE in addition to its lipid A 1-phosphate phosphatase activity. Both HupA and LpxE have crucial roles in the biosynthesis of several cell wall polysaccharides and thus constitute potential targets for new therapeutic strategies.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Helicobacter pylori/metabolism , Amino Acid Sequence , Animals , Bacterial Outer Membrane Proteins/physiology , Carrier Proteins/metabolism , Cell Membrane/metabolism , Cell Wall/metabolism , DNA-Binding Proteins , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Female , Helicobacter pylori/pathogenicity , Mice , Mice, Inbred Strains , Microbial Sensitivity Tests , Phosphatidate Phosphatase , Phosphoric Monoester Hydrolases/metabolism , Polyisoprenyl Phosphates/metabolism , Polymyxin B/pharmacology , Pyrophosphatases/metabolism , Stomach
13.
J Bacteriol ; 201(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-30988031

ABSTRACT

Certain Pseudomonas aeruginosa strains produce a homolog of colicin M, namely, PaeM, that specifically inhibits peptidoglycan biosynthesis of susceptible P. aeruginosa strains by hydrolyzing the lipid II intermediate precursor. Two variants of this pyocin were identified whose sequences mainly differed in the N-terminal protein moiety, i.e., the region involved in the binding to the FiuA outer membrane receptor and translocation into the periplasm. The antibacterial activity of these two variants, PaeM1 and PaeM2, was tested against various P. aeruginosa strains comprising reference strains PAO1 and PA14, PaeM-producing strains, and 60 clinical isolates. Seven of these strains, including PAO1, were susceptible to only one variant (2 to PaeM1 and 5 to PaeM2), and 11 were affected by both. The remaining strains, including PA14 and four PaeM1 producers, were resistant to both variants. The differences in the antibacterial spectra of the two PaeM homologs prompted us to investigate the molecular determinants allowing their internalization into P. aeruginosa cells, taking the PAO1 strain that is susceptible to PaeM2 but resistant to PaeM1 as the indicator strain. Heterologous expression of fiuA gene orthologs from different strains into PAO1, site-directed mutagenesis experiments, and construction of PaeM chimeric proteins provided evidence that the cell susceptibility and discrimination differences between the PaeM variants resulted from a polymorphism of both the pyocin and the outer membrane receptor FiuA. Moreover, we found that a third component, TonB1, a protein involved in iron transport in P. aeruginosa, working together with FiuA and the ExbB/ExbD complex, was directly implicated in this discrimination.IMPORTANCE Bacterial antibiotic resistance constitutes a threat to human health, imposing the need for identification of new targets and development of new strategies to fight multiresistant pathogens. Bacteriocins and other weapons that bacteria have themselves developed to kill competitors are therefore of great interest and a valuable source of inspiration for us. Attention was paid here to two variants of a colicin M homolog (PaeM) produced by certain strains of P. aeruginosa that inhibit the growth of their congeners by blocking cell wall peptidoglycan synthesis. Molecular determinants allowing recognition of these pyocins by the outer membrane receptor FiuA were identified, and a receptor polymorphism affecting the susceptibility of P. aeruginosa clinical strains was highlighted, providing new insights into the potential use of these pyocins as an alternative to antibiotics.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Drug Resistance, Bacterial , Polymorphism, Genetic , Pseudomonas aeruginosa/genetics , Pyocins/pharmacology , Anti-Bacterial Agents/pharmacology , Cell Wall/chemistry , Mutagenesis, Site-Directed , Peptidoglycan/chemistry , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Receptors, Cell Surface
14.
Nat Commun ; 9(1): 1078, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29540682

ABSTRACT

As a protective envelope surrounding the bacterial cell, the peptidoglycan sacculus is a site of vulnerability and an antibiotic target. Peptidoglycan components, assembled in the cytoplasm, are shuttled across the membrane in a cycle that uses undecaprenyl-phosphate. A product of peptidoglycan synthesis, undecaprenyl-pyrophosphate, is converted to undecaprenyl-phosphate for reuse in the cycle by the membrane integral pyrophosphatase, BacA. To understand how BacA functions, we determine its crystal structure at 2.6 Å resolution. The enzyme is open to the periplasm and to the periplasmic leaflet via a pocket that extends into the membrane. Conserved residues map to the pocket where pyrophosphorolysis occurs. BacA incorporates an interdigitated inverted topology repeat, a topology type thus far only reported in transporters and channels. This unique topology raises issues regarding the ancestry of BacA, the possibility that BacA has alternate active sites on either side of the membrane and its possible function as a flippase.


Subject(s)
Peptidoglycan/biosynthesis , Peptidoglycan/metabolism , Pyrophosphatases/chemistry , Pyrophosphatases/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Models, Biological , Molecular Sequence Data , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Polyisoprenyl Phosphates/chemistry , Polyisoprenyl Phosphates/metabolism , Protein Structure, Secondary
15.
Cell Mol Life Sci ; 74(12): 2319-2332, 2017 06.
Article in English | MEDLINE | ID: mdl-28168443

ABSTRACT

Type 2 phosphatidic acid phosphatases (PAP2s) can be either soluble or integral membrane enzymes. In bacteria, integral membrane PAP2s play major roles in the metabolisms of glycerophospholipids, undecaprenyl-phosphate (C55-P) lipid carrier and lipopolysaccharides. By in vivo functional experiments and biochemical characterization we show that the membrane PAP2 coded by the Bacillus subtilis yodM gene is the principal phosphatidylglycerol phosphate (PGP) phosphatase of B. subtilis. We also confirm that this enzyme, renamed bsPgpB, has a weaker activity on C55-PP. Moreover, we solved the crystal structure of bsPgpB at 2.25 Å resolution, with tungstate (a phosphate analog) in the active site. The structure reveals two lipid chains in the active site vicinity, allowing for PGP substrate modeling and molecular dynamic simulation. Site-directed mutagenesis confirmed the residues important for substrate specificity, providing a basis for predicting the lipids preferentially dephosphorylated by membrane PAP2s.


Subject(s)
Bacillus subtilis/enzymology , Cell Membrane/enzymology , Phosphatidate Phosphatase/chemistry , Phosphatidate Phosphatase/metabolism , Bacillus subtilis/genetics , Catalytic Domain , Crystallography, X-Ray , Escherichia coli/metabolism , Genes, Bacterial , Genetic Complementation Test , Models, Molecular , Mutagenesis, Site-Directed , Phosphatidate Phosphatase/genetics , Phosphatidylglycerols/metabolism , Solubility , Substrate Specificity
16.
Antibiotics (Basel) ; 5(4)2016 Oct 08.
Article in English | MEDLINE | ID: mdl-27740593

ABSTRACT

Colicins are bacterial toxins produced by some Escherichia coli strains. They exhibit either enzymatic or pore-forming activity towards a very limited number of bacterial species, due to the high specificity of their reception and translocation systems. Yet, we succeeded in making the colicin M homologue from Pectobacterium carotovorum, pectocin M1 (PcaM1), capable of inhibiting E. coli cell growth by bypassing these reception and translocation steps. This goal was achieved through periplasmic expression of this pectocin. Indeed, when appropriately addressed to the periplasm of E. coli, this pectocin could exert its deleterious effects, i.e., the enzymatic degradation of the peptidoglycan lipid II precursor, which resulted in the arrest of the biosynthesis of this essential cell wall polymer, dramatic morphological changes and, ultimately, cell lysis. This result leads to the conclusion that colicin M and its various orthologues constitute powerful antibacterial molecules able to kill any kind of bacterium, once they can reach their lipid II target. They thus have to be seriously considered as promising alternatives to antibiotics.

17.
PLoS One ; 10(11): e0142870, 2015.
Article in English | MEDLINE | ID: mdl-26560897

ABSTRACT

Several integral membrane proteins exhibiting undecaprenyl-pyrophosphate (C55-PP) phosphatase activity were previously identified in Escherichia coli that belonged to two distinct protein families: the BacA protein, which accounts for 75% of the C55-PP phosphatase activity detected in E. coli cell membranes, and three members of the PAP2 phosphatidic acid phosphatase family, namely PgpB, YbjG and LpxT. This dephosphorylation step is required to provide the C55-P carrier lipid which plays a central role in the biosynthesis of various cell wall polymers. We here report detailed investigations of the biochemical properties and membrane topology of the BacA protein. Optimal activity conditions were determined and a narrow-range substrate specificity with a clear preference for C55-PP was observed for this enzyme. Alignments of BacA protein sequences revealed two particularly well-conserved regions and several invariant residues whose role in enzyme activity was questioned by using a site-directed mutagenesis approach and complementary in vitro and in vivo activity assays. Three essential residues Glu21, Ser27, and Arg174 were identified, allowing us to propose a catalytic mechanism for this enzyme. The membrane topology of the BacA protein determined here experimentally did not validate previous program-based predicted models. It comprises seven transmembrane segments and contains in particular two large periplasmic loops carrying the highly-conserved active site residues. Our data thus provide evidence that all the different E. coli C55-PP phosphatases identified to date (BacA and PAP2) catalyze the dephosphorylation of C55-PP molecules on the same (outer) side of the plasma membrane.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Phosphoric Monoester Hydrolases/metabolism , Amino Acid Motifs , Amino Acid Sequence , Arginine/chemistry , Catalysis , Cell Membrane/metabolism , Genetic Complementation Test , Glutamine/chemistry , Lipids/chemistry , Membrane Proteins/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphatidate Phosphatase/metabolism , Phosphorylation , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Serine/chemistry , Substrate Specificity
18.
Microb Drug Resist ; 20(3): 199-214, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24799078

ABSTRACT

During the biogenesis of bacterial cell-wall polysaccharides, such as peptidoglycan, cytoplasmic synthesized precursors should be trafficked across the plasma membrane. This essential process requires a dedicated lipid, undecaprenyl-phosphate that is used as a glycan lipid carrier. The sugar is linked to the lipid carrier at the inner face of the membrane and is translocated toward the periplasm, where the glycan moiety is transferred to the growing polymer. Undecaprenyl-phosphate originates from the dephosphorylation of its precursor undecaprenyl-diphosphate, with itself generated by de novo synthesis or by recycling after the final glycan transfer. Undecaprenyl-diphosphate is de novo synthesized by the cytosolic cis-prenyltransferase undecaprenyl-diphosphate synthase, which has been structurally and mechanistically characterized in great detail highlighting the condensation process. In contrast, the next step toward the formation of the lipid carrier, the dephosphorylation step, which has been overlooked for many years, has only started revealing surprising features. In contrast to the previous step, two unrelated families of integral membrane proteins exhibit undecaprenyl-diphosphate phosphatase activity: BacA and members of the phosphatidic acid phosphatase type 2 super-family, raising the question of the significance of this multiplicity. Moreover, these enzymes establish an unexpected link between the synthesis of bacterial cell-wall polymers and other biological processes. In the present review, the current knowledge in the field of the bacterial lipid carrier, its mechanism of action, biogenesis, recycling, regulation, and future perspective works are presented.


Subject(s)
Cell Membrane/metabolism , Cell Wall/metabolism , Escherichia coli/metabolism , Polyisoprenyl Phosphates/metabolism , Alkyl and Aryl Transferases/metabolism , Biological Transport , Cell Membrane/chemistry , Cell Wall/chemistry , Escherichia coli/chemistry , Escherichia coli Proteins/metabolism , Lipid Metabolism , Peptidoglycan/metabolism , Phosphatidate Phosphatase/metabolism , Phosphoric Monoester Hydrolases/metabolism
19.
Biochem Soc Trans ; 40(6): 1522-7, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23176510

ABSTRACT

Colicins are proteins produced by some strains of Escherichia coli to kill competitors belonging to the same species. Among them, ColM (colicin M) is the only one that blocks the biosynthesis of peptidoglycan, a specific bacterial cell-wall polymer essential for cell integrity. ColM acts in the periplasm by hydrolysing the phosphoester bond of the peptidoglycan lipid intermediate (lipid II). ColM cytotoxicity is dependent on FkpA of the targeted cell, a chaperone with peptidylprolyl cis-trans isomerase activity. Dissection of ColM was used to delineate the catalytic domain and to identify the active-site residues. The in vitro activity of the isolated catalytic domain towards lipid II was 50-fold higher than that of the full-length bacteriocin. Moreover, this domain was bactericidal in the absence of FkpA under conditions that bypass the import mechanism (FhuA-TonB machinery). Thus ColM undergoes a maturation process driven by FkpA that is not required for the activity of the isolated catalytic domain. Genes encoding proteins with similarity to the catalytic domain of ColM were identified in pathogenic strains of Pseudomonas and other genera. ColM acts on several structures of lipid II representative of the diversity of peptidoglycan chemotypes. All together, these data open the way to the potential use of ColM-related bacteriocins as broad spectrum antibacterial agents.


Subject(s)
Anti-Bacterial Agents/metabolism , Colicins/metabolism , Escherichia coli/enzymology , Peptidoglycan/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antibiosis , Bacteriocins/chemistry , Bacteriocins/metabolism , Bacteriocins/pharmacology , Colicins/chemistry , Colicins/pharmacology , Humans , Models, Molecular , Protein Conformation , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Uridine Diphosphate N-Acetylmuramic Acid/metabolism
20.
J Biol Chem ; 287(44): 37395-405, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-22977250

ABSTRACT

Colicin M (ColM) is the only enzymatic colicin reported to date that inhibits cell wall peptidoglycan biosynthesis. It catalyzes the specific degradation of the lipid intermediates involved in this pathway, thereby provoking lysis of susceptible Escherichia coli cells. A gene encoding a homologue of ColM was detected within the exoU-containing genomic island A carried by certain pathogenic Pseudomonas aeruginosa strains. This bacteriocin (pyocin) that we have named PaeM was crystallized, and its structure with and without an Mg(2+) ion bound was solved. In parallel, site-directed mutagenesis of conserved PaeM residues from the C-terminal domain was performed, confirming their essentiality for the protein activity both in vitro (lipid II-degrading activity) and in vivo (cytotoxicity against a susceptible P. aeruginosa strain). Although PaeM is structurally similar to ColM, the conformation of their active sites differs radically; in PaeM, residues essential for enzymatic activity and cytotoxicity converge toward a same pocket, whereas in ColM they are spread along a particularly elongated active site. We have also isolated a minimal domain corresponding to the C-terminal half of the PaeM protein and exhibiting a 70-fold higher enzymatic activity as compared with the full-length protein. This isolated domain of the PaeM bacteriocin was further shown to kill E. coli cells when addressed to the periplasm of these bacteria.


Subject(s)
Bacteriocins/chemistry , Colicins/chemistry , Phosphoric Diester Hydrolases/chemistry , Pseudomonas aeruginosa/metabolism , Amino Acid Sequence , Amino Acid Substitution , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriocins/metabolism , Bacteriocins/pharmacology , Catalytic Domain , Colicins/metabolism , Colicins/pharmacology , Conserved Sequence , Crystallography, X-Ray , Escherichia coli/drug effects , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Peptide Fragments/chemistry , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/pharmacology , Protein Structure, Secondary , Structural Homology, Protein , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...