Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 21(9): e3002307, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37747905

ABSTRACT

To migrate efficiently, neutrophils must polarize their cytoskeletal regulators along a single axis of motion. This polarization process is thought to be mediated through local positive feedback that amplifies leading edge signals and global negative feedback that enables sites of positive feedback to compete for dominance. Though this two-component model efficiently establishes cell polarity, it has potential limitations, including a tendency to "lock" onto a particular direction, limiting the ability of cells to reorient. We use spatially defined optogenetic control of a leading edge organizer (PI3K) to probe how neutrophil-like HL-60 cells balance "decisiveness" needed to polarize in a single direction with the flexibility needed to respond to new cues. Underlying this balancing act is a local Rac inhibition process that destabilizes the leading edge to promote exploration. We show that this local inhibition enables cells to process input signal dynamics, linking front stability and orientation to local temporal increases in input signals.

2.
Cell ; 186(14): 3049-3061.e15, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37311454

ABSTRACT

Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.


Subject(s)
Actins , Actomyosin , Actins/metabolism , Actomyosin/metabolism , Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Cell Movement/physiology
3.
Mol Biol Cell ; 34(5): ar35, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36857159

ABSTRACT

By acting both upstream of and downstream from biochemical organizers of the cytoskeleton, physical forces function as central integrators of cell shape and movement. Here we use a combination of genetic, pharmacological, and optogenetic perturbations to probe the role of the conserved mechanosensitive mTOR complex 2 (mTORC2) programs in neutrophil polarity and motility. We find that the tension-based inhibition of leading-edge signals (Rac, F-actin) that underlies protrusion competition is gated by the kinase-independent role of the complex, whereas the regulation of RhoA and myosin II-based contractility at the trailing edge depend on mTORC2 kinase activity. mTORC2 is essential for spatial and temporal coordination of the front and back polarity programs for persistent migration under confinement. This mechanosensory pathway integrates multiple upstream signals, and we find that membrane stretch synergizes with biochemical co-input phosphatidylinositol (3,4,5)-trisphosphate to robustly amplify mTORC2 activation. Our results suggest that different signaling arms of mTORC2 regulate spatially and molecularly divergent cytoskeletal programs for efficient coordination of neutrophil shape and movement.


Subject(s)
Actins , Neutrophils , Neutrophils/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Cell Movement/physiology , Actins/metabolism , Signal Transduction
4.
Elife ; 112022 09 20.
Article in English | MEDLINE | ID: mdl-36125261

ABSTRACT

T cells use kinetic proofreading to discriminate antigens by converting small changes in antigen-binding lifetime into large differences in cell activation, but where in the signaling cascade this computation is performed is unknown. Previously, we developed a light-gated immune receptor to probe the role of ligand kinetics in T cell antigen signaling. We found significant kinetic proofreading at the level of the signaling lipid diacylglycerol (DAG) but lacked the ability to determine where the multiple signaling steps required for kinetic discrimination originate in the upstream signaling cascade (Tiseher and Weiner, 2019). Here, we uncover where kinetic proofreading is executed by adapting our optogenetic system for robust activation of early signaling events. We find the strength of kinetic proofreading progressively increases from Zap70 recruitment to LAT clustering to downstream DAG generation. Leveraging the ability of our system to rapidly disengage ligand binding, we also measure slower reset rates for downstream signaling events. These data suggest a distributed kinetic proofreading mechanism, with proofreading steps both at the receptor and at slower resetting downstream signaling complexes that could help balance antigen sensitivity and discrimination.


Subject(s)
Antigens , Diglycerides , Antigens/metabolism , Kinetics , Ligands , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes
5.
J Cell Biol ; 220(8)2021 08 02.
Article in English | MEDLINE | ID: mdl-34096975

ABSTRACT

How local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. Here we investigate how the WAVE complex organizes sheet-like lamellipodia. Using super-resolution microscopy, we find that the WAVE complex forms actin-independent 230-nm-wide rings that localize to regions of saddle membrane curvature. This pattern of enrichment could explain several emergent cell behaviors, such as expanding and self-straightening lamellipodia and the ability of endothelial cells to recognize and seal transcellular holes. The WAVE complex recruits IRSp53 to sites of saddle curvature but does not depend on IRSp53 for its own localization. Although the WAVE complex stimulates actin nucleation via the Arp2/3 complex, sheet-like protrusions are still observed in ARP2-null, but not WAVE complex-null, cells. Therefore, the WAVE complex has additional roles in cell morphogenesis beyond Arp2/3 complex activation. Our work defines organizing principles of the WAVE complex lamellipodial template and suggests how feedback between cell shape and actin regulators instructs cell morphogenesis.


Subject(s)
Cell Membrane/metabolism , Cell Shape , Pseudopodia/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/metabolism , Animals , Cell Membrane/genetics , Cell Membrane/ultrastructure , Cell Movement , HEK293 Cells , HL-60 Cells , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/ultrastructure , Humans , Macrophages/metabolism , Macrophages/ultrastructure , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Melanoma, Experimental/ultrastructure , Mice , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Transport , Pseudopodia/genetics , Pseudopodia/ultrastructure , Signal Transduction , Time Factors , Wiskott-Aldrich Syndrome Protein Family/genetics
6.
PLoS Biol ; 17(10): e3000457, 2019 10.
Article in English | MEDLINE | ID: mdl-31600188

ABSTRACT

Migratory cells use distinct motility modes to navigate different microenvironments, but it is unclear whether these modes rely on the same core set of polarity components. To investigate this, we disrupted actin-related protein 2/3 (Arp2/3) and the WASP-family verprolin homologous protein (WAVE) complex, which assemble branched actin networks that are essential for neutrophil polarity and motility in standard adherent conditions. Surprisingly, confinement rescues polarity and movement of neutrophils lacking these components, revealing a processive bleb-based protrusion program that is mechanistically distinct from the branched actin-based protrusion program but shares some of the same core components and underlying molecular logic. We further find that the restriction of protrusion growth to one site does not always respond to membrane tension directly, as previously thought, but may rely on closely linked properties such as local membrane curvature. Our work reveals a hidden circuit for neutrophil polarity and indicates that cells have distinct molecular mechanisms for polarization that dominate in different microenvironments.


Subject(s)
Actin-Related Protein 2-3 Complex/genetics , Actins/genetics , Cell Polarity/genetics , Chemotaxis/genetics , Wiskott-Aldrich Syndrome Protein Family/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Biomechanical Phenomena , CRISPR-Cas Systems , Cell Adhesion/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cell Polarity/drug effects , Chemotactic Factors/pharmacology , Chemotaxis/drug effects , Gene Editing , Gene Expression Regulation , HEK293 Cells , HL-60 Cells , Humans , Microscopy, Atomic Force , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Pseudopodia/drug effects , Pseudopodia/metabolism , Pseudopodia/ultrastructure , Signal Transduction , Surface Properties , Wiskott-Aldrich Syndrome Protein Family/deficiency
7.
Biol Open ; 7(7)2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30037883

ABSTRACT

Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary timescales. Building on our previous work (Mavor et al., 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-Fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. Collectively, our experiments have identified eight new sensitizing conditions for Lys63 and uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.

SELECTION OF CITATIONS
SEARCH DETAIL
...