Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Neurosci ; 43(5): 749-763, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36604168

ABSTRACT

A key question in auditory neuroscience is to what extent are brain regions functionally specialized for processing specific sound features, such as location and identity. In auditory cortex, correlations between neural activity and sounds support both the specialization of distinct cortical subfields, and encoding of multiple sound features within individual cortical areas. However, few studies have tested the contribution of auditory cortex to hearing in multiple contexts. Here we determined the role of ferret primary auditory cortex in both spatial and nonspatial hearing by reversibly inactivating the middle ectosylvian gyrus during behavior using cooling (n = 2 females) or optogenetics (n = 1 female). Optogenetic experiments used the mDLx promoter to express Channelrhodopsin-2 in GABAergic interneurons, and we confirmed both viral expression (n = 2 females) and light-driven suppression of spiking activity in auditory cortex, recorded using Neuropixels under anesthesia (n = 465 units from 2 additional untrained female ferrets). Cortical inactivation via cooling or optogenetics impaired vowel discrimination in colocated noise. Ferrets implanted with cooling loops were tested in additional conditions that revealed no deficit when identifying vowels in clean conditions, or when the temporally coincident vowel and noise were spatially separated by 180 degrees. These animals did, however, show impaired sound localization when inactivating the same auditory cortical region implicated in vowel discrimination in noise. Our results demonstrate that, as a brain region showing mixed selectivity for spatial and nonspatial features of sound, primary auditory cortex contributes to multiple forms of hearing.SIGNIFICANCE STATEMENT Neurons in primary auditory cortex are often sensitive to the location and identity of sounds. Here we inactivated auditory cortex during spatial and nonspatial listening tasks using cooling, or optogenetics. Auditory cortical inactivation impaired multiple behaviors, demonstrating a role in both the analysis of sound location and identity and confirming a functional contribution of mixed selectivity observed in neural activity. Parallel optogenetic experiments in two additional untrained ferrets linked behavior to physiology by demonstrating that expression of Channelrhodopsin-2 permitted rapid light-driven suppression of auditory cortical activity recorded under anesthesia.


Subject(s)
Auditory Cortex , Sound Localization , Animals , Female , Auditory Cortex/physiology , Ferrets/physiology , Channelrhodopsins/genetics , Acoustic Stimulation , Sound Localization/physiology , Auditory Perception/physiology , Hearing
2.
Nat Commun ; 13(1): 5905, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207304

ABSTRACT

Theta oscillations are a hallmark of hippocampal activity across mammals and play a critical role in many hippocampal models of memory and spatial navigation. To reconcile the cross-species differences observed in the presence and properties of theta, we recorded hippocampal local field potentials in rats and ferrets during auditory and visual localisation tasks designed to vary locomotion and sensory attention. Here, we show that theta oscillations occur during locomotion in both ferrets and rats, however during periods of immobility, theta oscillations persist in the ferret, contrasting starkly with the switch to large irregular activity (LIA) in the rat. Theta during immobility in the ferret is identified as analogous to Type 2 theta that has been observed in rodents due to its sensitivity to atropine, and is modulated by behavioural state with the strongest theta observed during reward epochs. These results demonstrate that even under similar behavioural conditions, differences exist between species in the relationship between theta and behavioural state.


Subject(s)
Ferrets , Theta Rhythm , Animals , Atropine , Hippocampus , Locomotion , Rats
3.
J Neurosci ; 42(22): 4580-4593, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35501154

ABSTRACT

The location of sounds can be described in multiple coordinate systems that are defined relative to ourselves, or the world around us. Evidence from neural recordings in animals point toward the existence of both head-centered and world-centered representations of sound location in the brain; however, it is unclear whether such neural representations have perceptual correlates in the sound localization abilities of nonhuman listeners. Here, we establish novel behavioral tests to determine the coordinate systems in which ferrets can localize sounds. We found that ferrets could learn to discriminate between sound locations that were fixed in either world-centered or head-centered space, across wide variations in sound location in the alternative coordinate system. Using probe sounds to assess broader generalization of spatial hearing, we demonstrated that in both head and world-centered tasks, animals used continuous maps of auditory space to guide behavior. Single trial responses of individual animals were sufficiently informative that we could then model sound localization using speaker position in specific coordinate systems and accurately predict ferrets' actions in held-out data. Our results demonstrate that ferrets, an animal model in which neurons are known to be tuned to sound location in egocentric and allocentric reference frames, can also localize sounds in multiple head and world-centered spaces.SIGNIFICANCE STATEMENT Humans can describe the location of sounds either relative to themselves, or in the world, independent of their momentary position. These different spaces are also represented in the activity of neurons in animals, but it is not clear whether nonhuman listeners also perceive both head and world-centered sound location. Here, we designed behavioral tasks in which ferrets discriminated between sounds using their position in the world, or relative to the head. Subjects learnt to solve both problems and generalized sound location in each space when presented with infrequent probe sounds. These findings reveal a perceptual correlate of neural sensitivity previously observed in the ferret brain and establish that, like humans, ferrets can access an auditory map of their local environment.


Subject(s)
Sound Localization , Acoustic Stimulation , Animals , Ferrets/physiology , Hearing , Neurons/physiology , Sound , Sound Localization/physiology
4.
PLoS One ; 15(8): e0232733, 2020.
Article in English | MEDLINE | ID: mdl-32764762

ABSTRACT

Ferrets (Mustela putorius furo) are a valuable animal model used in biomedical research. Like many animals, ferrets undergo significant variation in body weight seasonally, affected by photoperiod, and these variations complicate the use weight as an indicator of health status. To overcome this requires a better understanding of these seasonal weight changes. We provide a normative weight data set for the female ferret accounting for seasonal changes, and also investigate the effect of fluid regulation on weight change. Female ferrets (n = 39) underwent behavioural testing from May 2017 to August 2019 and were weighed daily, while housed in an animal care facility with controlled light exposure. In the winter (October to March), animals experienced 10 hours of light and 14 hours of dark, while in summer (March to October), this contingency was reversed. Individual animals varied in their body weight from approximately 700 to 1200 g. However, weights fluctuated with light cycle, with animals losing weight in summer, and gaining weight in winter such that they fluctuated between approximately 80% and 120% of their long-term average. Ferrets were weighed as part of their health assessment while experiencing water regulation for behavioural training. Water regulation superimposed additional weight changes on these seasonal fluctuations, with weight loss during the 5-day water regulation period being greater in summer than winter. Analysing the data with a Generalised Linear Model confirmed that the percentage decrease in weight per week was relatively constant throughout the summer months, while the percentage increase in body weight per week in winter decreased through the season. Finally, we noted that the timing of oestrus was reliably triggered by the increase in day length in spring. These data establish a normative benchmark for seasonal weight variation in female ferrets that can be incorporated into the health assessment of an animal's condition.


Subject(s)
Body Weight , Ferrets/anatomy & histology , Animal Husbandry , Animals , Animals, Laboratory/anatomy & histology , Animals, Laboratory/physiology , Body Water/physiology , Estrus/physiology , Female , Ferrets/physiology , Linear Models , Models, Animal , Models, Biological , Photoperiod , Reference Values , Seasons
5.
Brain Struct Funct ; 225(5): 1643-1667, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32458050

ABSTRACT

Recent studies of the neurobiology of the dorsal frontal cortex (FC) of the ferret have illuminated its key role in the attention network, top-down cognitive control of sensory processing, and goal directed behavior. To elucidate the neuroanatomical regions of the dorsal FC, and delineate the boundary between premotor cortex (PMC) and dorsal prefrontal cortex (dPFC), we placed retrograde tracers in adult ferret dorsal FC anterior to primary motor cortex and analyzed thalamo-cortical connectivity. Cyto- and myeloarchitectural differences across dorsal FC and the distinctive projection patterns from thalamic nuclei, especially from the subnuclei of the medial dorsal (MD) nucleus and the ventral thalamic nuclear group, make it possible to clearly differentiate three separate dorsal FC fields anterior to primary motor cortex: polar dPFC (dPFCpol), dPFC, and PMC. Based on the thalamic connectivity, there is a striking similarity of the ferret's dorsal FC fields with other species. This possible homology opens up new questions for future comparative neuroanatomical and functional studies.


Subject(s)
Motor Cortex/cytology , Neurons/cytology , Prefrontal Cortex/cytology , Thalamic Nuclei/cytology , Animals , Female , Ferrets , Male , Neural Pathways/cytology , Neuroanatomical Tract-Tracing Techniques
6.
Nat Commun ; 10(1): 3019, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31289272

ABSTRACT

Auditory cortex is required for sound localisation, but how neural firing in auditory cortex underlies our perception of sound sources in space remains unclear. Specifically, whether neurons in auditory cortex represent spatial cues or an integrated representation of auditory space across cues is not known. Here, we measured the spatial receptive fields of neurons in primary auditory cortex (A1) while ferrets performed a relative localisation task. Manipulating the availability of binaural and spectral localisation cues had little impact on ferrets' performance, or on neural spatial tuning. A subpopulation of neurons encoded spatial position consistently across localisation cue type. Furthermore, neural firing pattern decoders outperformed two-channel model decoders using population activity. Together, these observations suggest that A1 encodes the location of sound sources, as opposed to spatial cue values.


Subject(s)
Auditory Cortex/physiology , Auditory Pathways/physiology , Neurons/physiology , Sound Localization/physiology , Acoustic Stimulation/instrumentation , Acoustic Stimulation/methods , Action Potentials/physiology , Animals , Auditory Cortex/cytology , Behavior, Animal/physiology , Cues , Female , Ferrets , Microelectrodes , Models, Animal
7.
Nat Commun ; 9(1): 4786, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30429465

ABSTRACT

Perceptual constancy requires neural representations that are selective for object identity, but also tolerant across identity-preserving transformations. How such representations arise in the brain and support perception remains unclear. Here, we study tolerant representation of sound identity in the auditory system by recording neural activity in auditory cortex of ferrets during perceptual constancy. Ferrets generalize vowel identity across variations in fundamental frequency, sound level and location, while neurons represent sound identity robustly across acoustic variations. Stimulus features are encoded with distinct time-courses in all conditions, however encoding of sound identity is delayed when animals fail to generalize and during passive listening. Neurons also encode information about task-irrelevant sound features, as well as animals' choices and accuracy, while population decoding out-performs animals' behavior. Our results show that during perceptual constancy, sound identity is represented robustly in auditory cortex across widely varying conditions, and behavioral generalization requires conserved timing of identity information.

8.
Neuron ; 97(3): 640-655.e4, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29395914

ABSTRACT

How and where in the brain audio-visual signals are bound to create multimodal objects remains unknown. One hypothesis is that temporal coherence between dynamic multisensory signals provides a mechanism for binding stimulus features across sensory modalities. Here, we report that when the luminance of a visual stimulus is temporally coherent with the amplitude fluctuations of one sound in a mixture, the representation of that sound is enhanced in auditory cortex. Critically, this enhancement extends to include both binding and non-binding features of the sound. We demonstrate that visual information conveyed from visual cortex via the phase of the local field potential is combined with auditory information within auditory cortex. These data provide evidence that early cross-sensory binding provides a bottom-up mechanism for the formation of cross-sensory objects and that one role for multisensory binding in auditory cortex is to support auditory scene analysis.


Subject(s)
Auditory Perception/physiology , Neurons/physiology , Visual Cortex/physiology , Visual Perception/physiology , Acoustic Stimulation , Action Potentials , Animals , Female , Ferrets , Photic Stimulation
9.
PLoS Biol ; 15(6): e2001878, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28617796

ABSTRACT

A key function of the brain is to provide a stable representation of an object's location in the world. In hearing, sound azimuth and elevation are encoded by neurons throughout the auditory system, and auditory cortex is necessary for sound localization. However, the coordinate frame in which neurons represent sound space remains undefined: classical spatial receptive fields in head-fixed subjects can be explained either by sensitivity to sound source location relative to the head (egocentric) or relative to the world (allocentric encoding). This coordinate frame ambiguity can be resolved by studying freely moving subjects; here we recorded spatial receptive fields in the auditory cortex of freely moving ferrets. We found that most spatially tuned neurons represented sound source location relative to the head across changes in head position and direction. In addition, we also recorded a small number of neurons in which sound location was represented in a world-centered coordinate frame. We used measurements of spatial tuning across changes in head position and direction to explore the influence of sound source distance and speed of head movement on auditory cortical activity and spatial tuning. Modulation depth of spatial tuning increased with distance for egocentric but not allocentric units, whereas, for both populations, modulation was stronger at faster movement speeds. Our findings suggest that early auditory cortex primarily represents sound source location relative to ourselves but that a minority of cells can represent sound location in the world independent of our own position.


Subject(s)
Auditory Cortex/physiology , Models, Neurological , Models, Psychological , Neurons/physiology , Sound Localization , Spatial Processing , Acoustic Stimulation , Animals , Auditory Cortex/cytology , Auditory Cortex/radiation effects , Behavior, Animal/radiation effects , Electric Stimulation , Electrodes, Implanted , Evoked Potentials, Auditory/radiation effects , Exploratory Behavior/radiation effects , Female , Ferrets , Head Movements/radiation effects , Locomotion/radiation effects , Neurons/cytology , Neurons/radiation effects , Sound , Sound Localization/radiation effects , Spatial Behavior/radiation effects , Spatial Processing/radiation effects , Video Recording
10.
PLoS One ; 12(1): e0170264, 2017.
Article in English | MEDLINE | ID: mdl-28099489

ABSTRACT

The objective of this study was to demonstrate the efficacy of acute inactivation of brain areas by cooling in the behaving ferret and to demonstrate that cooling auditory cortex produced a localisation deficit that was specific to auditory stimuli. The effect of cooling on neural activity was measured in anesthetized ferret cortex. The behavioural effect of cooling was determined in a benchmark sound localisation task in which inactivation of primary auditory cortex (A1) is known to impair performance. Cooling strongly suppressed the spontaneous and stimulus-evoked firing rates of cortical neurons when the cooling loop was held at temperatures below 10°C, and this suppression was reversed when the cortical temperature recovered. Cooling of ferret auditory cortex during behavioural testing impaired sound localisation performance, with unilateral cooling producing selective deficits in the hemifield contralateral to cooling, and bilateral cooling producing deficits on both sides of space. The deficit in sound localisation induced by inactivation of A1 was not caused by motivational or locomotor changes since inactivation of A1 did not affect localisation of visual stimuli in the same context.


Subject(s)
Acoustic Stimulation/methods , Auditory Cortex/physiology , Ferrets/physiology , Functional Laterality/physiology , Sound Localization/physiology , Animals , Brain Mapping , Cold Temperature , Photic Stimulation
11.
Curr Opin Neurobiol ; 40: 31-37, 2016 10.
Article in English | MEDLINE | ID: mdl-27344253

ABSTRACT

Multisensory integration is observed in many subcortical and cortical locations including primary and non-primary sensory cortex, and higher cortical areas including frontal and parietal cortex. During unisensory perceptual tasks many of these same brain areas show neural signatures associated with decision-making. It is unclear whether multisensory representations in sensory cortex directly inform decision-making in a multisensory task, or if cross-modal signals are only combined after the accumulation of unisensory evidence at a final decision-making stage in higher cortical areas. Manipulations of neuronal activity are required to establish causal roles for given brain regions in multisensory perceptual decision-making, and so far indicate that distributed networks underlie multisensory decision-making. Understanding multisensory integration requires synthesis of small-scale pathway specific and large-scale network level manipulations.


Subject(s)
Decision Making/physiology , Feedback, Sensory/physiology , Parietal Lobe/physiology , Humans , Signal Transduction
12.
J Acoust Soc Am ; 137(5): 2870-83, 2015 May.
Article in English | MEDLINE | ID: mdl-25994714

ABSTRACT

Timbre distinguishes sounds of equal loudness, pitch, and duration; however, little is known about the neural mechanisms underlying timbre perception. Such understanding requires animal models such as the ferret in which neuronal and behavioral observation can be combined. The current study asked what spectral cues ferrets use to discriminate between synthetic vowels. Ferrets were trained to discriminate vowels differing in the position of the first (F1) and second formants (F2), inter-formant distance, and spectral centroid. In experiment 1, ferrets responded to probe trials containing novel vowels in which the spectral cues of trained vowels were mismatched. Regression models fitted to behavioral responses determined that F2 and spectral centroid were stronger predictors of ferrets' behavior than either F1 or inter-formant distance. Experiment 2 examined responses to single formant vowels and found that individual spectral peaks failed to account for multi-formant vowel perception. Experiment 3 measured responses to unvoiced vowels and showed that ferrets could generalize vowel identity across voicing conditions. Experiment 4 employed the same design as experiment 1 but with human participants. Their responses were also predicted by F2 and spectral centroid. Together these findings further support the ferret as a model for studying the neural processes underlying timbre perception.


Subject(s)
Behavior, Animal , Cues , Discrimination, Psychological , Ferrets/psychology , Loudness Perception , Pitch Discrimination , Acoustic Stimulation , Acoustics , Adult , Animals , Auditory Pathways/physiology , Female , Ferrets/physiology , Humans , Male , Psychoacoustics , Sound Spectrography , Species Specificity , Young Adult
13.
Front Syst Neurosci ; 7: 88, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24312021

ABSTRACT

Timbre is the attribute that distinguishes sounds of equal pitch, loudness and duration. It contributes to our perception and discrimination of different vowels and consonants in speech, instruments in music and environmental sounds. Here we begin by reviewing human timbre perception and the spectral and temporal acoustic features that give rise to timbre in speech, musical and environmental sounds. We also consider the perception of timbre by animals, both in the case of human vowels and non-human vocalizations. We then explore the neural representation of timbre, first within the peripheral auditory system and later at the level of the auditory cortex. We examine the neural networks that are implicated in timbre perception and the computations that may be performed in auditory cortex to enable listeners to extract information about timbre. We consider whether single neurons in auditory cortex are capable of representing spectral timbre independently of changes in other perceptual attributes and the mechanisms that may shape neural sensitivity to timbre. Finally, we conclude by outlining some of the questions that remain about the role of neural mechanisms in behavior and consider some potentially fruitful avenues for future research.

SELECTION OF CITATIONS
SEARCH DETAIL
...