Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Biotechnol ; 86: 103082, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428225

ABSTRACT

Monoclonal antibodies have revolutionized the treatment of human diseases, which has made them the fastest-growing class of therapeutics, with global sales expected to reach $346.6 billion USD by 2028. Advances in antibody engineering and development have led to the creation of increasingly sophisticated antibody-based therapeutics (e.g. bispecific antibodies and chimeric antigen receptor T cells). However, approaches for antibody discovery have remained comparatively grounded in conventional yet reliable in vitro assays. Breakthrough developments in high-throughput single B-cell sequencing and immunoglobulin proteomic serology, however, have enabled the identification of high-affinity antibodies directly from endogenous B cells or circulating immunoglobulin produced in vivo. Moreover, advances in artificial intelligence offer vast potential for antibody discovery and design with large-scale repertoire datasets positioned as the optimal source of training data for such applications. We highlight advances and recent trends in how these technologies are being applied to antibody repertoire analysis.


Subject(s)
Antibodies, Bispecific , Proteomics , Humans , Artificial Intelligence , Antibodies, Monoclonal
2.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38545622

ABSTRACT

We used plasma IgG proteomics to study the molecular composition and temporal durability of polyclonal IgG antibodies triggered by ancestral SARS-CoV-2 infection, vaccination, or their combination ("hybrid immunity"). Infection, whether primary or post-vaccination, mainly triggered an anti-spike antibody response to the S2 domain, while vaccination predominantly induced anti-RBD antibodies. Immunological imprinting persisted after a secondary (hybrid) exposure, with >60% of the ensuing serological response originating from the initial antibodies generated during the first exposure. We highlight one instance where hybrid immunity arising from breakthrough infection resulted in a marked increase in the breadth and affinity of a highly abundant vaccination-elicited plasma IgG antibody, SC27. With an intrinsic binding affinity surpassing a theoretical maximum (K D < 5 pM), SC27 demonstrated potent neutralization of various SARS-CoV-2 variants and SARS-like zoonotic viruses (IC 50 ∼0.1-1.75 nM) and provided robust protection in vivo . Cryo-EM structural analysis unveiled that SC27 binds to the RBD class 1/4 epitope, with both VH and VL significantly contributing to the binding interface. These findings suggest that exceptionally broad and potent antibodies can be prevalent in plasma and can largely dictate the nature of serological neutralization. HIGHLIGHTS: ▪ Infection and vaccination elicit unique IgG antibody profiles at the molecular level▪ Immunological imprinting varies between infection (S2/NTD) and vaccination (RBD)▪ Hybrid immunity maintains the imprint of first infection or first vaccination▪ Hybrid immune IgG plasma mAbs have superior neutralization potency and breadth.

SELECTION OF CITATIONS
SEARCH DETAIL
...