Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(26): 12474-12481, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38860292

ABSTRACT

Efficient and environmentally friendly synthesis of silanols is a crucial issue across the broad fields of academic and industrial chemistry. Herein, we describe the dehydrogenative oxidation of hydrosilane using a gold nanoparticle catalyst supported by fibrillated citric acid-modified cellulose (F-CAC). Au:F-CAC catalysts with various particle sizes (1.7 nm, 4.9 nm, and 7.7 nm) were prepared using the trans-deposition method, a technique previously reported by our group. These catalysts exhibited significant catalytic activity to produce silanols with high turnover frequency (TOF) of up to 7028 h-1. Recycling experiments and transmission electron microscopy (TEM) observation represented the high durability of Au:F-CAC under the reaction conditions, allowing kinetic studies on size dependency. Mechanistic studies were conducted, including isotope labelling experiments, kinetics, and various spectroscopies. Notably, the near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) of the model catalyst (Au:PVP) revealed the formation of catalytically active cationic Au sites on the surface through the adsorption of molecular oxygen, providing a new insight into the reaction mechanism.

2.
ACS Catal ; 13(16): 10734-10750, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37614518

ABSTRACT

Low temperature and high pressure are thermodynamically more favorable conditions to achieve high conversion and high methanol selectivity in CO2 hydrogenation. However, low-temperature activity is generally very poor due to the sluggish kinetics, and thus, designing highly selective catalysts active below 200 °C is a great challenge in CO2-to-methanol conversion. Recently, Re/TiO2 has been reported as a promising catalyst. We show that Re/TiO2 is indeed more active in continuous and high-pressure (56 and 331 bar) operations at 125-200 °C compared to an industrial Cu/ZnO/Al2O3 catalyst, which suffers from the formation of methyl formate and its decomposition to carbon monoxide. At lower temperatures, precise understanding and control over the active surface intermediates are crucial to boosting conversion kinetics. This work aims at elucidating the nature of active sites and active species by means of in situ/operando X-ray absorption spectroscopy, Raman spectroscopy, ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Transient operando DRIFTS studies uncover the activation of CO2 to form active formate intermediates leading to methanol formation and also active rhenium carbonyl intermediates leading to methane over cationic Re single atoms characterized by rhenium tricarbonyl complexes. The transient techniques enable us to differentiate the active species from the spectator one on TiO2 support, such as less reactive formate originating from spillover and methoxy from methanol adsorption. The AP-XPS supports the fact that metallic Re species act as H2 activators, leading to H-spillover and importantly to hydrogenation of the active formate intermediate present over cationic Re species. The origin of the unique reactivity of Re/TiO2 was suggested as the coexistence of cationic highly dispersed Re including single atoms, driving the formation of monodentate formate, and metallic Re clusters in the vicinity, activating the hydrogenation of the formate to methanol.

3.
J Phys Chem Lett ; 13(36): 8546-8552, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36067214

ABSTRACT

The Pt-Rh thin-film sensors exhibit excellent sensitivity and selectivity for H2 gas detection. Here, we studied the mechanism of highly selective detection of H2 by the Pt-Rh thin-film sensors with ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) measurements at working conditions, which were paralleled with electric resistivity measurements. The elemental composition and chemical state of surface Pt and Rh drastically change depending on the background gas environments, which directly link to the sensor response. It is revealed that surface segregated Pt atoms accelerate dissociative adsorption of H2, resulting in a reduction of the sensor surface and then a decrease of electric resistivity of the film, whereas a thin oxidized Rh layer blocks dissociation of the other reducing agent, that is, NH3. This is supported from the adsorption energetics obtained by the density functional theory (DFT) calculations.

4.
Phys Chem Chem Phys ; 24(5): 2988-2996, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35037674

ABSTRACT

We report a newly designed compact cell to measure XAFS spectra with the conversion electron yield (CEY) method in the soft X-ray region under ambient-pressure gas conditions. Secondary electrons generated from the gas and sample by collision of X-ray-absorption-induced Auger electrons are collected by a positively biased collector electrode to obtain XAFS spectra. It was confirmed that this cell is applicable to soft X-ray surface XAFS measurements for different types of materials such as insulating organic materials and metal oxides under 1 bar gas conditions. During the measurements, photoinduced side effects were observed; i.e. photoinduced degradation of organic materials and photoinduced reduction/oxidation of metal oxides. We found that these photoinduced side effects can be sufficiently suppressed by controlling the measuring conditions. The presented measuring approach will enable surface XAFS spectra to be obtained in the soft X-ray region for various types of functional materials under ambient-pressure working conditions.

5.
Chem Commun (Camb) ; 56(94): 14905-14908, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33179651

ABSTRACT

In situ monitoring of initial oxidation of GaAs surfaces was performed under (near-) realistic oxidizing environments, using ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). The surface chemical states drastically change with time. The oxidation process at the sub-nano-meter-scale exhibits a significantly small activation energy, which can be regarded as a quasi-barrier-less oxidation.

6.
J Phys Chem Lett ; 11(21): 9249-9254, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33073999

ABSTRACT

Oxidation of monometallic Pd and bimetallic Pd3Au alloy surfaces are observed by in situ ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at an elevated pressure (100 mTorr O2 ambient). It is directly evidenced that the alloying with Au hinders the surface oxidation of Pd3Au surfaces compared with monometallic Pd surfaces. Remarkably, the oxidation behavior is clearly different between Pd3Au(111) and (100) surfaces. The (100) surface has a relatively Pd-rich surface composition, and the surface oxide layer is formed, whereas the (111) surface has a Au-rich composition, and the surface oxidation is quite limited. A combined approach of experimental and theoretical techniques reveals that Pd/Au surface composition and atomic arrangement are key factors determining the oxidation behavior.

7.
Chem Commun (Camb) ; 56(70): 10147-10150, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32734986

ABSTRACT

In situ ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) combined with resistivity measurement was performed for a Pt thin-film H2 gas sensor. We experimentally demonstrate that the chemical state of the Pt surface changes under working conditions, and it directly links to the sensing performance. Moreover, the operating principle is discussed at the atomic scale.

8.
Phys Chem Chem Phys ; 20(45): 28419-28424, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30403236

ABSTRACT

The interactions between oxygen and Rh-Pd bimetallic alloy surfaces were investigated using surface sensitive experimental techniques and density functional theory calculations. The alloy surfaces were oxidized under 10-5 Torr and 100 mTorr oxygen upon heating above 250 °C. A thin Rh oxide layer was preferentially formed on a Rh1Pd9(100) surface, while a thin Pd oxide layer was formed on a Rh1Pd9(111) surface, though the Rh oxide is thermodynamically more stable irrespective of the surface orientation. Chemical analyses revealed that the initial Rh fraction for the (111) surface was significantly lower than that for the (100) surface, which suggests that the oxidized element on the surface is kinetically selected depending on the near surface initial composition.

9.
Chem Commun (Camb) ; 53(94): 12657-12660, 2017 Nov 23.
Article in English | MEDLINE | ID: mdl-29130093

ABSTRACT

Catalytic CO oxidation over Pd(111) and Pd70Au30(111) surfaces was investigated by in situ spectroscopic observations to understand the alloying effect. The reaction behaviour on Pd70Au30(111) is greatly different from that on Pd(111). Pd monomer and dimer ensembles can act as active centers, whereas triangular-shaped trimers and larger ensembles are inactive.

10.
J Phys Condens Matter ; 27(8): 083003, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25667354

ABSTRACT

Catalytic chemical reactions proceeding on solid surfaces are an important topic in fundamental science and industrial technologies such as energy conversion, pollution control and chemical synthesis. Complete understanding of the heterogeneous catalysis and improving its efficiency to an ultimate level are the eventual goals for many surface scientists. Soft x-ray is one of the prime probes to observe electronic and structural information of the target materials. Most studies in surface science using soft x-rays have been performed under ultra-high vacuum conditions due to the technical limitation, though the practical catalytic reactions proceed under ambient pressure conditions. However, recent developments of soft x-ray based techniques operating under ambient pressure conditions have opened a door to the in-situ observation of materials under realistic environments. The near-ambient-pressure x-ray photoelectron spectroscopy (NAP-XPS) using synchrotron radiation enables us to observe the chemical states of surfaces of condensed matters under the presence of gas(es) at elevated pressures, which has been hardly conducted with the conventional XPS technique. Furthermore, not only the NAP-XPS but also ambient-pressure compatible soft x-ray core-level spectroscopies, such as near-edge absorption fine structure (NEXAFS) and x-ray emission spectroscopy (XES), have been significantly contributing to the in-situ observations. In this review, first we introduce recent developments of in-situ observations using soft x-ray techniques and current status. Then we present recent new findings on catalytically active surfaces using soft x-ray techniques, particularly focusing on the NAP-XPS technique. Finally we give a perspective on the future direction of this emerging technique.


Subject(s)
Photoelectron Spectroscopy/methods , Carbon Monoxide/chemistry , Catalysis , Hydrocarbons/chemistry , Photons , Surface Properties
11.
Phys Chem Chem Phys ; 16(43): 23564-7, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25286880

ABSTRACT

We investigated the high-density CO adsorption phase formed on a Pt(111) surface when exposed to CO gas of pressure ranging from UHV to 100 mTorr using near-ambient-pressure (NAP)-XPS. Combined results from the NAP-XPS measurements and DFT calculations reveal the adsorption structure of CO molecules in the dense CO overlayer, which is stable under realistic conditions.

12.
J Phys Chem Lett ; 3(21): 3182-7, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-26296026

ABSTRACT

Catalytic CO oxidation reaction on a Pd(100) single-crystal surface under several hundred mTorr pressure conditions has been studied by ambient pressure X-ray photoelectron spectroscopy and mass spectroscopy. In-situ observation of the reaction reveals that two reaction pathways switch over alternatively depending on the surface temperature. At lower temperatures, the Pd(100) surface is covered by CO molecules and the CO2 formation rate is low, indicating CO poisoning. At higher temperatures above 190 °C, an O-Pd-O trilayer surface oxide phase is formed on the surface and the CO2 formation rate drastically increases. It is likely that the enhanced rate of CO2 formation is associated with an active oxygen species that is located at the surface of the trilayer oxide.

SELECTION OF CITATIONS
SEARCH DETAIL
...