Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bio Protoc ; 11(6): e3949, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33855111

ABSTRACT

Calcium signaling is an emerging mechanism by which bacteria respond to environmental cues. To measure the intracellular free-calcium concentration in bacterial cells, [Ca2+]i, a simple spectrofluorometric method based on the chemical probe Fura 2-acetoxy methyl ester (Fura 2-AM) is here presented using Pseudomonad bacterial cells. This is an alternative and quantitative method that can be completed in a short period of time with low costs, and it does not require the induction of heterologously expressed protein-based probes like Aequorin. Furthermore, it is possible to verify the properties of membrane channels involved in Ca2+ entry from the extracellular matrix. This method is in particular valuable for measuring [Ca2+]i in the range of 0.1-39.8 µM in small cells like those of prokaryotes.

2.
Mol Plant Pathol ; 20(5): 716-730, 2019 05.
Article in English | MEDLINE | ID: mdl-30912619

ABSTRACT

In a number of compatible plant-bacterium interactions, a rise in apoplastic Ca2+ levels is observed, suggesting that Ca2+ represents an important environmental clue, as reported for bacteria infecting mammalians. We demonstrate that Ca2+ entry in Pseudomonas savastanoi pv. savastanoi (Psav) strain DAPP-PG 722 is mediated by a Na+ /Ca2+ exchanger critical for virulence. Using the fluorescent Ca2+ probe Fura 2-AM, we demonstrate that Ca2+ enters Psav cells foremost when they experience low levels of energy, a situation mimicking the apoplastic fluid. In fact, Ca2+ entry was suppressed in the presence of high concentrations of glucose, fructose, sucrose or adenosine triphosphate (ATP). Since Ca2+ entry was inhibited by nifedipine and LiCl, we conclude that the channel for Ca2+ entry is a Na+ /Ca2+ exchanger. In silico analysis of the Psav DAPP-PG 722 genome revealed the presence of a single gene coding for a Na+ /Ca2+ exchanger (cneA), which is a widely conserved and ancestral gene within the P. syringae complex based on gene phylogeny. Mutation of cneA compromised not only Ca2+ entry, but also compromised the Hypersensitive response (HR) in tobacco leaves and blocked the ability to induce knots in olive stems. The expression of both pathogenicity (hrpL, hrpA and iaaM) and virulence (ptz) genes was reduced in this Psav-cneA mutant. Complementation of the Psav-cneA mutation restored both Ca2+ entry and pathogenicity in olive plants, but failed to restore the HR in tobacco leaves. In conclusion, Ca2+ entry acts as a 'host signal' that allows and promotes Psav pathogenicity on olive plants.


Subject(s)
Bacterial Proteins/metabolism , Olea/microbiology , Pseudomonas/pathogenicity , Sodium-Calcium Exchanger/metabolism , Bacterial Proteins/genetics , Bacterial Secretion Systems/drug effects , Biofilms/growth & development , Calcium/metabolism , Chromosomes, Bacterial/genetics , Cytosol/metabolism , Gene Expression Regulation, Bacterial/drug effects , Indoleacetic Acids/pharmacology , Mutation/genetics , Olea/drug effects , Phenotype , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Pseudomonas/drug effects , Nicotiana/microbiology , Virulence/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL