Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Main subject
Publication year range
1.
J Am Chem Soc ; 146(17): 11740-11755, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629752

ABSTRACT

Nonaqueous organic redox flow batteries (N-ORFBs) are a promising technology for grid-scale storage of energy generated from intermittent renewable sources. Their primary benefit over traditional aqueous RFBs is the wide electrochemical stability window of organic solvents, but the design of catholyte materials, which can exploit the upper range of this window, has proven challenging. We report herein a new class of N-ORFB catholytes in the form of squaric acid quinoxaline (SQX) and squaric acid amide (SQA) materials. Mechanistic investigation of decomposition in battery-relevant conditions via NMR, HRMS, and electrochemical methods enabled a rational design approach to optimizing these scaffolds. Three lead compounds were developed: a highly stable one-electron SQX material with an oxidation potential of 0.51 V vs Fc/Fc+ that maintained 99% of peak capacity after 102 cycles (51 h) when incorporated into a 1.58 V flow battery; a high-potential one-electron SQA material with an oxidation potential of 0.81 V vs Fc/Fc+ that demonstrated negligible loss of redox active material as measured by pre- and postcycling CV peak currents when incorporated in a 1.63 V flow battery for 110 cycles over 29 h; and a proof-of-concept two-electron SQA catholyte material with oxidation potentials of 0.48 and 0.85 V vs Fc/Fc+ that demonstrated a capacity fade of just 0.56% per hour during static H-cell cycling. These findings expand the previously reported space of high-potential catholyte materials and showcase the power of mechanistically informed synthetic design for N-ORFB materials development.

2.
J Am Chem Soc ; 145(34): 18877-18887, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37585274

ABSTRACT

Redox flow batteries (RFBs) are a promising stationary energy storage technology for leveling power supply from intermittent renewable energy sources with demand. A central objective for the development of practical, scalable RFBs is to identify affordable and high-performance redox-active molecules as storage materials. Herein, we report the design, synthesis, and evaluation of a new organic scaffold, indolo[2,3-b]quinoxaline, for highly stable, low-reduction potential, and high-solubility anolytes for nonaqueous redox flow batteries (NARFBs). The mixture of 2- and 3-(tert-butyl)-6-(2-methoxyethyl)-6H-indolo[2,3-b]quinoxaline exhibits a low reduction potential (-2.01 V vs Fc/Fc+), high solubility (>2.7 M in acetonitrile), and remarkable stability (99.86% capacity retention over 49.5 h (202 cycles) of H-cell cycling). This anolyte was paired with N-(2-(2-methoxyethoxy)-ethyl)phenothiazine (MEEPT) to achieve a 2.3 V all-organic NARFB exhibiting 95.8% capacity retention over 75.1 h (120 cycles) of cycling.

3.
Chem Sci ; 13(36): 10806-10814, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36320695

ABSTRACT

All-organic non-aqueous redox flow batteries (O-NRFBs) are a promising technology for grid-scale energy storage. However, most examples of high-voltage (>2 V) O-NRFBs rely upon the use of distinct anolytes and catholytes separated by a membrane or porous separator which can result in crossover of redox active material from one side of the battery to the other. The resulting electrolyte mixing leads to irreversible reductions in energy density and capacity. A potentially attractive solution to overcome this crossover issue is the implementation of symmetric flow batteries where a single bipolar molecule functions as both an anolyte and a catholyte. Herein, we report the development of a new class of bipolar redox active materials for use in such symmetric flow batteries through the electronic coupling of phenothiazine catholytes and phthalimide anolytes. Such a strategy results in hybrid molecules possessing higher cell voltages than what could be obtained together by their uncoupled building blocks. Performance in flow batteries is demonstrated for two members of this new class of molecules, with the highest performing candidate featuring a ΔE of 2.31 V and demonstrating 93.6% average coulombic efficiency, 86.8% energy efficiency, and 68.6% capacity retention over the course of 275 charge-discharge cycles and 5 cell polarity reversals. Finally, the superior performance of symmetric O-NRFBs is experimentally confirmed by comparing these results to an asymmetric flow battery constructed with a distinct phenothiazine catholyte and a distinct phthalimide anolyte on opposing sides of the cell.

4.
Org Lett ; 23(13): 4981-4985, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34114462

ABSTRACT

The synthesis of the pentacylic core of (+)-citrinadin A is described. Our strategy harnesses the power of palladium-catalyzed trimethylenemethane chemistry (Pd-TMM) to form the key spirooxindole motif in a catalytic, asymmetric fashion. Upon the conversion of this spirooxindole to a vinyl epoxide electrophile, the piperidine ring is directly added via a diastereoselective metalation followed by an SN2' addition. The final ring of the pentacyclic core is then formed through an intramolecular SN2 displacement of the resulting activated alcohol.

5.
Acc Chem Res ; 53(8): 1568-1579, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32692147

ABSTRACT

Enolate chemistry is one of the most fundamental strategies for the formation of carbon-carbon and carbon-heteroatom bonds. Classically, this has been accomplished through the use of stoichiometric quantities of strong base and cryogenic reaction temperatures. However, these techniques present issues related to enolate regioselectivity and functional group tolerance. While more modern methods utilizing stoichiometric activating agents have overcome some of these limitations, these processes add additional steps and suffer from poor atom economy. While certain classes of highly acidic nucleophiles have enabled the development of elegant and general catalytic solutions to address all of these limitations, functionalizing less acidic nucleophiles remains difficult.To overcome these challenges, we developed an alternative general approach for the formation and subsequent functionalization of metal enolates that leverages catalytic amounts of Lewis acid and entirely avoids the need for exogenous base or stoichiometric additives. To do so, we re-engineered the classical Meyer-Schuster rearrangement, which normally converts propargylic alcohols into α,ß-unsaturated carbonyl compounds. By careful control of reaction conditions and by selection of an appropriate vanadium-oxo catalyst, the transient metal enolates formed via the 1,3-transposition of propargylic or allenylic alcohols can be guided away from simple protonation reaction pathways and toward more synthetically productive carbon-carbon, carbon-halogen, and carbon-nitrogen bond-forming processes.By utilizing readily available propargylic and allenylic alcohols as our starting materials and relying on a catalytic 1,3-transposition to generate metal enolates in situ, all issues related to the regioselectivity of enolate formation are resolved. Likewise, utilization of a simple isomerization for enolate formation results in a highly efficient process that can be 100% atom economical. The mild reaction conditions employed also allow for remarkable chemoselectivity. Functional groups not typically conducive to enolate chemistry, such as alkynyl ketones, methyl ketones, free alcohols, and primary alkyl halides, are all well tolerated. Finally, by varying the substitution patterns of the alcohol starting materials, enolates of ketones, esters, and even amides are all accessible.Utilizing this strategy starting from propargylic alcohols, we have developed functionalization reactions that produce highly substituted and geometrically defined α-functionalized α,ß-unsaturated carbonyl compounds. Such processes include aldol, Mannich, and electrophilic halogenation reactions, as well as dual catalytic reactions wherein catalytically generated vanadium enolates are trapped with catalytically generated palladium π-allyl electrophiles. In the case of allenylic alcohols, we have developed complementary aldol, Mannich, halogenation, and dual catalytic processes to generate α'-functionalized α,ß-unsaturated carbonyl products.The results described in this work showcase the power and generality of our alternative approach to enolate chemistry. Additionally, we point out unaddressed challenges in the field and invite other groups to help innovate in these areas.

6.
Nat Chem ; 12(7): 629-637, 2020 07.
Article in English | MEDLINE | ID: mdl-32483385

ABSTRACT

Polyketide natural products are an important class of biologically active compounds. Although substantial progress has been made on the synthesis of repetitive polyketide motifs through the iterative application of a single reaction type, synthetic access to more diverse motifs that require more than one type of carbon-carbon bond connection remains a challenge. Here we describe a catalytic, multicomponent method for the synthesis of the privileged polyketide 1,3-dienyl-6-oxy motif. The method allows for the formation of two new carbon-carbon bonds and two stereodefined olefins. It generates products that contain up to three contiguous sp3 stereocentres with a high stereoselectivity in a single operation and can be used to generate chiral products. The successful development of this methodology relies on the remarkable efficiency of the ruthenium-catalysed alkene-alkyne coupling reaction between readily available vinyl boronic acids and alkynes to provide unsymmetrical 3-boryl-1,4-diene reagents. In the presence of carbonyl compounds, these reagents undergo highly diastereoselective allylations to afford the desired 1,3-dienyl-6-oxy motif and enable complex polyketide synthesis in a rapid and asymmetric fashion.

7.
Angew Chem Int Ed Engl ; 59(6): 2370-2374, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31800976

ABSTRACT

The preparation of acyclic ß-fluoro amines bearing tetrasubstituted fluorine stereocenters is described via a direct Zn/ProPhenol-catalyzed Mannich reaction. The reaction utilizes branched vinyl or alkynyl α-fluoro ketones that can be coupled with a range of aryl, heteroaryl, vinyl, or cyclopropyl aldimines in high yield and with excellent diastereo- (up to >20:1) and enantioselectivity (up to 99 %). The use of readily cleaved tert-butoxycarbonyl (Boc) or carboxybenzyl (Cbz) imine protecting groups adds utility to the reaction by allowing for easy access to the free amine products under mild and chemoselective reaction conditions.

8.
Org Lett ; 21(4): 1207-1211, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30689391

ABSTRACT

A vanadium-catalyzed coupling of allenylic alcohols with electrophilic halide sources to form α-halo-α',ß'-unsaturated ketones is described. The process proceeds through a metal enolate formed from the 1,3-transposition of an allenol that is initiated by a cheap and earth-abundant vanadium oxo catalyst. Fluorine, chlorine, and bromine electrophiles can be utilized, and the resulting products can give rise to the introduction of nitrogen, oxygen, sulfur, and iodine nucleophiles α to the ketone through substitution chemistry.

9.
J Am Chem Soc ; 141(4): 1489-1493, 2019 01 30.
Article in English | MEDLINE | ID: mdl-30642168

ABSTRACT

We report the first enantio- and diastereoselective 1,4-addition of butenolides to chromones. Both α,ß- and ß,γ-butenolide nucleophiles are compatible with the Zn-ProPhenol catalyst, and preactivation as the siloxyfurans is not required. The scope of electrophiles includes a variety of substituted chromones, as well as a thiochromone and a quinolone, and the resulting vinylogous addition products are generated in good yield (31 to 98%), diastereo- (3:1 to >30:1), and enantioselectivity (90:10 to 99:1 er). These Michael adducts allow rapid access to several natural product analogs, and can be easily transformed into a variety of other interesting scaffolds as well.

10.
Org Lett ; 20(24): 8043-8046, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30511873

ABSTRACT

Nonreducing, pH-neutral conditions for the selective cleavage of the 2,2,2-trichloroethoxycarbonyl (Troc) protecting group are reported. Using trimethyltin hydroxide in 1,2-dichloroethane, Troc-protected alcohols, thiols, and amines can be selectively unmasked in the presence of various functionalities that are incompatible with the reducing conditions traditionally used to remove the Troc group. This mild deprotection protocol tolerates a variety of other hydrolytically sensitive and acid/base-sensitive moieties as well.

11.
J Am Chem Soc ; 139(50): 18198-18201, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29198100

ABSTRACT

We report a Zn-ProPhenol catalyzed reaction between butenolides and imines to obtain tetrasubstituted vinylogous Mannich products in good yield and diastereoselectivity with excellent enantioselectivity (97 to >99.5% ee). Notably, both α,ß- and ß,γ-butenolides can be utilized as nucleophiles in this transformation. The imine partner bears the synthetically versatile N-Cbz group, avoiding the use of the specialized aryl directing groups previously required in related work. Additionally, the reaction can be performed on gram scale with reduced catalyst loading as low as 2 mol %. The functional group-rich products can be further elaborated using a variety of methods.

12.
Org Lett ; 19(10): 2630-2633, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28467706

ABSTRACT

A vanadium catalyzed 1,3-rearrangement of allenols to form transient vanadium enolates that selectively couple with electrophilic nitrogen sources is reported even in the presence of competing simple protonation and Alder-ene pathways. Hydrazine products can be cyclized in a 6-endo-trig fashion which, upon reductive cleavage of the N-N bond, yield 1,4-diamines. Additionally, cleavage of the N-N bond before cyclization can be achieved to form ß-hydroxy amines, a common structural motif of biologically active compounds.


Subject(s)
Alkadienes/chemistry , Carbon , Catalysis , Molecular Structure , Nitrogen , Vanadium
13.
Chemistry ; 21(43): 15108-12, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26334442

ABSTRACT

The aldol reaction represents an important class of atom-economic carbon-carbon bond-forming reactions vital to modern organic synthesis. Despite the attention this reaction has received, issues related to chemo- and regioselectivity as well as reactivity of readily enolizable electrophiles remain. To help overcome these limitations, a new direct approach toward aldol products that does not rely upon carbonyl substrates is described. This approach employs room-temperature contemporaneous lanthanum/vanadium dual catalysis, whereby a vanadium-catalyzed 1,3-transposition of allenols is coupled with a lanthanum-catalyzed Meinwald rearrangement of epoxides in situ to directly form aldol products.

SELECTION OF CITATIONS
SEARCH DETAIL
...