Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(10): 6639-6650, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38651358

ABSTRACT

We describe an optimization and scale-up of the 45-membered macrocyclic thioether peptide BMS-986189 utilizing solid-phase peptide synthesis (SPPS). Improvements to linear peptide isolation, macrocyclization, and peptide purification were demonstrated to increase the throughput and purification of material on scale and enabled the synthesis and purification of >60 g of target peptide. Taken together, not only these improvements resulted in a 28-fold yield increase from the original SPPS approach, but also the generality of this newly developed SPPS purification sequence has found application in the synthesis and purification of other macrocyclic thioether peptides.


Subject(s)
Macrocyclic Compounds , Peptides , Solid-Phase Synthesis Techniques , Sulfides , Sulfides/chemistry , Sulfides/chemical synthesis , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , Peptides/chemistry , Peptides/chemical synthesis , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Molecular Structure , Cyclization
2.
Org Lett ; 25(44): 7947-7952, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37284784

ABSTRACT

We describe a two-step process for the synthesis of substituted bicyclo[1.1.0]butanes. A photo-Hunsdiecker reaction generates iodo-bicyclo[1.1.1]pentanes under metal-free conditions at room temperature. These intermediates react with nitrogen and sulfur nucleophiles to afford substituted bicyclo[1.1.0]butane products.

3.
Bioorg Med Chem Lett ; 88: 129280, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37054759

ABSTRACT

Starting from the dialkylaniline indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor lead 3 (IDO1 HeLa IC50 = 7.0 nM), an iterative process of synthesis and screening led to cyclized analog 21 (IDO1 HeLa IC50 = 3.6 nM) which maintained the high potency of 3 while addressing issues of lipophilicity, cytochrome P450 (CYP) inhibition, hERG (human potassium ion channel Kv11.1) inhibition, Pregnane X Receptor (PXR) transactivation, and oxidative metabolic stability. An x-ray crystal structure of a biaryl alkyl ether 11 bound to IDO1 was obtained. Consistent with our earlier results, compound 11 was shown to bind to the apo form of the enzyme.


Subject(s)
Enzyme Inhibitors , Ethers , Humans , Structure-Activity Relationship , Enzyme Inhibitors/chemistry , HeLa Cells , Indoleamine-Pyrrole 2,3,-Dioxygenase
4.
Org Lett ; 24(41): 7643-7648, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36214755

ABSTRACT

An open-air method for the transition metal-free direct amination of nitro(hetero)arenes by anilines is disclosed. In this methodology, an aromatic C-H bond is substituted via oxidative nucleophilic aromatic substitution of hydrogen (ONSH). Density functional theory calculations and mechanistic studies support a dianion pathway with oxidation by molecular oxygen as the rate-limiting step.

5.
Org Lett ; 24(3): 799-803, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34714083

ABSTRACT

Owing to their participation in Click reactions, bifunctional azides are valuable intermediates in the preparation of medicines and biochemical tool compounds. Despite the privileged nature of pyridines among pharmaceutical scaffolds, reports of the synthesis and characterization of azidopyridines bearing a halogen substituent for further elaboration are almost completely unknown in the literature. As azidopyridines carry nearly equal numbers of nitrogen and carbon atoms, we hypothesized that safety concerns limited the application of these useful bifunctional building blocks in medicinal and biological chemistry. To address this concern, we prepared and characterized nine azidopyridines bearing a single fluorine, chlorine, or bromine atom. All were examined by differential scanning calorimetry (DSC), in which they demonstrated exotherms of 228-326 kJ/mol and onset temperatures between 119 and 135 °C. Selected azidopyridines were advanced to mechanical stress testing, in which impact sensitivity was noted for one regioisomer of C5H3FN4. The utility of these versatile intermediates was demonstrated through their use in a variety of Click reactions and the diversification of the halogen handles.


Subject(s)
Azides , Pyridines
6.
J Med Chem ; 64(21): 15549-15581, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34709814

ABSTRACT

The oxycyclohexyl acid BMS-986278 (33) is a potent lysophosphatidic acid receptor 1 (LPA1) antagonist, with a human LPA1 Kb of 6.9 nM. The structure-activity relationship (SAR) studies starting from the LPA1 antagonist clinical compound BMS-986020 (1), which culminated in the discovery of 33, are discussed. The detailed in vitro and in vivo preclinical pharmacology profiles of 33, as well as its pharmacokinetics/metabolism profile, are described. On the basis of its in vivo efficacy in rodent chronic lung fibrosis models and excellent overall ADME (absorption, distribution, metabolism, excretion) properties in multiple preclinical species, 33 was advanced into clinical trials, including an ongoing Phase 2 clinical trial in patients with lung fibrosis (NCT04308681).


Subject(s)
Drug Discovery , Pulmonary Fibrosis/drug therapy , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Male , Mice , Molecular Structure , Pulmonary Fibrosis/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Lysophosphatidic Acid/metabolism , Structure-Activity Relationship
7.
J Med Chem ; 64(19): 14247-14265, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34543572

ABSTRACT

Inhibition of the bromodomain and extra-terminal (BET) family of adaptor proteins is an attractive strategy for targeting transcriptional regulation of key oncogenes, such as c-MYC. Starting with the screening hit 1, a combination of structure-activity relationship and protein structure-guided drug design led to the discovery of a differently oriented carbazole 9 with favorable binding to the tryptophan, proline, and phenylalanine (WPF) shelf conserved in the BET family. Identification of an additional lipophilic pocket and functional group optimization to optimize pharmacokinetic (PK) properties culminated in the discovery of 18 (BMS-986158) with excellent potency in binding and functional assays. On the basis of its favorable PK profile and robust in vivo activity in a panel of hematologic and solid tumor models, BMS-986158 was selected as a candidate for clinical evaluation.


Subject(s)
Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , Drug Discovery , Phenylalanine/pharmacology , Proline/pharmacology , Tryptophan/pharmacology , Administration, Oral , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Carbazoles/administration & dosage , Carbazoles/chemistry , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Phenylalanine/administration & dosage , Phenylalanine/chemistry , Proline/administration & dosage , Proline/chemistry , Structure-Activity Relationship , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Tryptophan/administration & dosage , Tryptophan/chemistry
8.
ACS Med Chem Lett ; 12(7): 1143-1150, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34267885

ABSTRACT

IDO1 inhibitors have shown promise as immunotherapies for the treatment of a variety of cancers, including metastatic melanoma and renal cell carcinoma. We recently reported the identification of several novel heme-displacing IDO1 inhibitors, including the clinical molecules linrodostat (BMS-986205) and BMS-986242. Both molecules contain quinolines that, while being present in successful medicines, are known to be potentially susceptible to oxidative metabolism. Efforts to swap this quinoline with an alternative aromatic system led to the discovery of 2,3-disubstituted pyridines as suitable replacements. Further optimization, which included lowering ClogP in combination with strategic fluorine incorporation, led to the discovery of compound 29, a potent, selective IDO1 inhibitor with robust pharmacodynamic activity in a mouse xenograft model.

9.
ACS Med Chem Lett ; 12(3): 494-501, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33738077

ABSTRACT

Indoleamine 2,3-dioxygenase 1 (IDO1) has been identified as a target for small-molecule immunotherapy for the treatment of a variety of cancers including renal cell carcinoma and metastatic melanoma. This work focuses on the identification of IDO1 inhibitors containing replacements or isosteres for the amide found in BMS-986205, an amide-containing, IDO1-selective inhibitor currently in phase III clinical trials. Detailed subsequently are efforts to identify a structurally differentiated IDO1 inhibitor via the pursuit of a variety of heterocyclic isosteres, leading to the discovery of highly potent, imidazopyridine-containing IDO1 inhibitors.

10.
ACS Med Chem Lett ; 12(2): 288-294, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33603977

ABSTRACT

Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing dioxygenase enzyme implicated in cancer immune response. This account details the discovery of BMS-986242, a novel IDO1 inhibitor designed for the treatment of a variety of cancers including metastatic melanoma and renal cell carcinoma. Given the substantial interest around this target for cancer immunotherapy, we sought to identify a structurally differentiated clinical candidate that performs comparably to linrodostat (BMS-986205) in terms of both in vitro potency and in vivo pharmacodynamic effect in a mouse xenograft model. On the basis of its preclinical profile, BMS-986242 was selected as a candidate for clinical development.

11.
J Med Chem ; 63(4): 1660-1670, 2020 02 27.
Article in English | MEDLINE | ID: mdl-31990537

ABSTRACT

Endothelial lipase (EL) hydrolyzes phospholipids in high-density lipoprotein (HDL) resulting in reduction in plasma HDL levels. Studies with murine transgenic, KO, or loss-of-function variants strongly suggest that inhibition of EL will lead to sustained plasma high-density lipoprotein cholesterol (HDL-C) increase and, potentially, a reduced cardiovascular disease (CVD) risk. Herein, we describe the discovery of a series of oxadiazole ketones, which upon optimization, led to the identification of compound 12. Compound 12 was evaluated in a mouse pharmacodynamics (PD) model and demonstrated a 56% increase in plasma HDL-C. In a mouse reverse cholesterol transport study, compound 12 stimulated cholesterol efflux by 53% demonstrating HDL-C functionality.


Subject(s)
Cholesterol, HDL/metabolism , Enzyme Inhibitors/pharmacology , Ketones/pharmacology , Lipase/antagonists & inhibitors , Oxadiazoles/pharmacology , Animals , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Ketones/chemical synthesis , Ketones/pharmacokinetics , Male , Mice, Inbred C57BL , Molecular Structure , Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacokinetics , Structure-Activity Relationship
12.
ACS Med Chem Lett ; 10(3): 300-305, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30891130

ABSTRACT

We encountered a dilemma in the course of studying a series of antagonists of the G-protein coupled receptor CC chemokine receptor-2 (CCR2): compounds with polar C3 side chains exhibited good ion channel selectivity but poor oral bioavailability, whereas compounds with lipophilic C3 side chains exhibited good oral bioavailability in preclinical species but poor ion channel selectivity. Attempts to solve this through the direct modulation of physicochemical properties failed. However, the installation of a protonation-dependent conformational switching mechanism resolved the problem because it enabled a highly selective and relatively polar molecule to access a small population of a conformer with lower polar surface area and higher membrane permeability. Optimization of the overall properties in this series yielded the CCR2 antagonist BMS-741672 (7), which embodied properties suitable for study in human clinical trials.

13.
J Chromatogr A ; 1487: 116-128, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28131592

ABSTRACT

Atropisomers are stereoisomers resulting from hindered bond rotation. From synthesis of pure atropisomers, characterization of their interconversion thermodynamics to investigation of biological stereoselectivity, the evaluation of drug candidates subject to atropisomerism creates special challenges and can be complicated in both early drug discovery and later drug development. In this paper, we demonstrate an array of analytical techniques and systematic approaches to study the atropisomerism of drug molecules to meet these challenges. Using a case study of Bruton's tyrosine kinase (BTK) inhibitor drug candidates at Bristol-Myers Squibb, we present the analytical strategies and methodologies used during drug discovery including the detection of atropisomers, the determination of their relative composition, the identification of relative chirality, the isolation of individual atropisomers, the evaluation of interconversion kinetics, and the characterization of chiral stability in the solid state and in solution. In vivo and in vitro stereo-stability and stereo-selectivity were investigated as well as the pharmacological significance of any changes in atropisomer ratios. Techniques applied in these studies include analytical and preparative enantioselective supercritical fluid chromatography (SFC), enantioselective high performance liquid chromatography (HPLC), circular dichroism (CD), and mass spectrometry (MS). Our experience illustrates how atropisomerism can be a very complicated issue in drug discovery and why a thorough understanding of this phenomenon is necessary to provide guidance for pharmaceutical development. Analytical techniques and methodologies facilitate key decisions during the discovery of atropisomeric drug candidates by characterizing time-dependent physicochemical properties that can have significant biological implications and relevance to pharmaceutical development plans.


Subject(s)
Chromatography, High Pressure Liquid , Chromatography, Supercritical Fluid , Drug Discovery/methods , Protein-Tyrosine Kinases/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase , Circular Dichroism , Drug Discovery/instrumentation , Kinetics , Mass Spectrometry , Stereoisomerism , Thermodynamics
14.
J Med Chem ; 59(19): 9173-9200, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27583770

ABSTRACT

Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase, is a member of the Tec family of kinases. BTK plays an essential role in B cell receptor (BCR)-mediated signaling as well as Fcγ receptor signaling in monocytes and Fcε receptor signaling in mast cells and basophils, all of which have been implicated in the pathophysiology of autoimmune disease. As a result, inhibition of BTK is anticipated to provide an effective strategy for the clinical treatment of autoimmune diseases such as lupus and rheumatoid arthritis. This article details the structure-activity relationships (SAR) leading to a novel series of highly potent and selective carbazole and tetrahydrocarbazole based, reversible inhibitors of BTK. Of particular interest is that two atropisomeric centers were rotationally locked to provide a single, stable atropisomer, resulting in enhanced potency and selectivity as well as a reduction in safety liabilities. With significantly enhanced potency and selectivity, excellent in vivo properties and efficacy, and a very desirable tolerability and safety profile, 14f (BMS-986142) was advanced into clinical studies.


Subject(s)
Carbazoles/chemistry , Carbazoles/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase , Animals , Carbazoles/pharmacokinetics , Crystallography, X-Ray , Female , Humans , Isomerism , Macaca fascicularis , Mice , Mice, Inbred BALB C , Models, Molecular , Protein Kinase Inhibitors/pharmacokinetics , Protein-Tyrosine Kinases/metabolism , Quinazolines/chemistry , Quinazolines/pharmacokinetics , Quinazolines/pharmacology , Structure-Activity Relationship
15.
ACS Med Chem Lett ; 6(4): 439-44, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25893046

ABSTRACT

We describe the hybridization of our previously reported acyclic and cyclic CC chemokine receptor 2 (CCR2) antagonists to lead to a new series of dual antagonists of CCR2 and CCR5. Installation of a γ-lactam as the spacer group and a quinazoline as a benzamide mimetic improved oral bioavailability markedly. These efforts led to the identification of 13d, a potent and orally bioavailable dual antagonist suitable for use in both murine and monkey models of inflammation.

16.
J Med Chem ; 58(3): 1556-62, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25584393

ABSTRACT

The prominent role of IAPs in controlling cell death and their overexpression in a variety of cancers has prompted the development of IAP antagonists as potential antitumor therapies. We describe the identification of a series of heterodimeric antagonists with highly potent antiproliferative activities in cIAP- and XIAP-dependent cell lines. Compounds 15 and 17 further demonstrate curative efficacy in human melanoma and lung cancer xenograft models and are promising candidates for advanced studies.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Proline/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Molecular Structure , Neoplasms, Experimental/pathology , Proline/chemical synthesis , Proline/chemistry , Structure-Activity Relationship
17.
Drug Metab Dispos ; 36(12): 2513-22, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18787056

ABSTRACT

Various groups have sought to determine the impact of CYP2C8 genotype (and CYP2C8 inhibition) on the pharmacokinetics (PK) of ibuprofen (IBU) enantiomers. However, the contribution of cytochrome P450 2C8 (CYP2C8) in human liver microsomes (HLMs) has not been reported. Therefore, in vitro cytochrome P450 (P450) reaction phenotyping was conducted with selective inhibitors of cytochrome P450 2C9 (CYP2C9) and CYP2C8. In the presence of HLMs, sulfaphenazole (CYP2C9 inhibitor), and anti-CYP2C9 monoclonal antibodies (mAbs) inhibited (73-100%) the 2- and 3-hydroxylation of both IBU enantiomers (1 and 20 microM). At a higher IBU concentration (500 microM), the same inhibitors were less able to inhibit the 2-hydroxylation of (S)-(+)-IBU (32-52%) and (R)-(-)-IBU (30-64%), whereas the 3-hydroxylation of (S)-(+)-IBU and (R)-(-)-IBU was inhibited 66 to 83 and 70 to 89%, respectively. In contrast, less inhibition was observed with montelukast (CYP2C8 inhibitor, < or =35%) and anti-CYP2C8 mAbs (< or =24%) at all concentrations of IBU. When (S)-(+)-IBU and (R)-(-)-IBU (1 microM) were incubated with a panel of recombinant human P450s, only CYP2C9 formed appreciable amounts of the hydroxy metabolites. At a higher IBU enantiomer concentration (500 microM), additional P450s catalyzed 2-hydroxylation (CYP3A4, CYP2C8, CYP2C19, CYP2D6, CYP2E1, and CYP2B6) and 3-hydroxylation (CYP2C19). When the P450 reaction phenotype and additional clearance pathways are considered (e.g., direct glucuronidation and chiral inversion), it is concluded that CYP2C8 plays a minor role in (R)-(-)-IBU (<10%) and (S)-(+)-IBU ( approximately 13%) clearance. By extension, one would not expect CYP2C8 inhibition (and genotype) to greatly affect the pharmacokinetic profile of either enantiomer. On the other hand, CYP2C9 inhibition and genotype are expected to have an impact on the PK of (S)-(+)-IBU.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Ibuprofen/metabolism , Microsomes, Liver/metabolism , Acetates/pharmacology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Aryl Hydrocarbon Hydroxylases/genetics , Aryl Hydrocarbon Hydroxylases/immunology , Catalysis , Cyclopropanes , Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP2C8 , Cytochrome P-450 CYP2C9 , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Diclofenac/metabolism , Enzyme Inhibitors/pharmacology , Genotype , Humans , Hydroxylation , Ibuprofen/analogs & derivatives , Ketoconazole/pharmacology , Kinetics , Mephenytoin/analogs & derivatives , Mephenytoin/pharmacology , Microsomes, Liver/drug effects , Quinolines/pharmacology , Recombinant Proteins/metabolism , Stereoisomerism , Sulfaphenazole/pharmacology , Sulfides , Tandem Mass Spectrometry
18.
Bioorg Med Chem Lett ; 18(2): 586-95, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18160284

ABSTRACT

Conformational analysis of the 3-benzylpiperidine in CCR3 antagonist clinical candidate 1 (BMS-639623) predicts that the benzylpiperidine may be replaced by acyclic, conformationally stabilized, anti-1,2-disubstituted phenethyl- and phenpropylamines. Ab initio calculations, enantioselective syntheses, and evaluation in CCR3 binding and chemotaxis assays of anti-1-methyl-2-hydroxyphenethyl- and phenpropylamine-containing CCR3 antagonists support this conformational correlation.


Subject(s)
Piperidines/chemistry , Piperidines/pharmacology , Receptors, CCR3/antagonists & inhibitors , Urea/analogs & derivatives , Cyclization , Hydrogen Bonding , Molecular Conformation , Urea/chemistry , Urea/pharmacology
19.
J Med Chem ; 49(24): 6946-9, 2006 Nov 30.
Article in English | MEDLINE | ID: mdl-17125246

ABSTRACT

LFA-1 (leukocyte function-associated antigen-1), is a member of the beta2-integrin family and is expressed on all leukocytes. This letter describes the discovery and preliminary SAR of spirocyclic hydantoin based LFA-1 antagonists that culminated in the identification of analog 8 as a clinical candidate. We also report the first example of the efficacy of a small molecule LFA-1 antagonist in combination with CTLA-4Ig in an animal model of transplant rejection.


Subject(s)
Lymphocyte Function-Associated Antigen-1/metabolism , Spiro Compounds/chemical synthesis , Thiophenes/chemical synthesis , Animals , Cell Adhesion/drug effects , Crystallography, X-Ray , Dogs , Graft Rejection/prevention & control , Humans , Lymphocyte Function-Associated Antigen-1/chemistry , Mice , Models, Molecular , Molecular Structure , Pneumonia/drug therapy , Pneumonia/immunology , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Stereoisomerism , Structure-Activity Relationship , Thiophenes/pharmacokinetics , Thiophenes/pharmacology , Transplantation, Homologous
20.
Bioorg Med Chem Lett ; 16(15): 3937-42, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16730979

ABSTRACT

Synthesis and SAR of substituted pyrrolotriazine-4-one analogues as Eg5 inhibitors are described. Many of these analogues displayed potent inhibitory activities in the Eg5 ATPase and A2780 cell proliferation assays. In addition, pyrrolotriazine-4-one analogue 26 demonstrated in vivo efficacy in an iv P388 murine leukemia model. Both NMR and X-ray crystallographic studies revealed that these analogues bind to an allosteric site on the Eg5 protein.


Subject(s)
Kinesins/antagonists & inhibitors , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Humans , Magnetic Resonance Spectroscopy , Mice , Models, Molecular , Pyrroles/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...