Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
J Nucl Med ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960716

ABSTRACT

The fibroblast activation protein (FAP) is highly expressed in tumor and stromal cells of mesothelioma and thus is an interesting imaging and therapeutic target. Previous data on PET imaging with radiolabeled FAP inhibitors (FAPIs) suggest high potential for superior tumor detection. Here, we report the data of a large malignant pleural mesothelioma cohort within a 68Ga-FAPI46 PET observational trial (NCT04571086). Methods: Of 43 eligible patients with suspected or proven malignant mesothelioma, 41 could be included in the data analysis of the 68Ga-FAPI46 PET observational trial. All patients underwent 68Ga-FAPI46 PET/CT, contrast-enhanced CT, and 18F-FDG PET/CT. The primary study endpoint was the association of 68Ga-FAPI46 PET uptake intensity and histopathologic FAP expression. Furthermore, secondary endpoints were detection rate and sensitivity, specificity, and positive and negative predictive values as compared with 18F-FDG PET/CT. Datasets were interpreted by 2 masked readers. Results: The primary endpoint was met, and the association between 68Ga-FAPI46 SUVmax or SUVpeak and histopathologic FAP expression was significant (SUVmax: r = 0.49, P = 0.037; SUVpeak: r = 0.51, P = 0.030).68Ga-FAPI46 and 18F-FDG showed similar sensitivity by histopathologic validation on a per-patient (100.0% vs. 97.3%) and per region (98.0% vs. 95.9%) basis. Per-region analysis revealed higher 68Ga-FAPI46 than 18F-FDG specificity (81.1% vs. 36.8%) and positive predictive value (87.5% vs. 66.2%). Conclusion: We confirm an association of 68Ga-FAPI46 uptake and histopathologic FAP expression in mesothelioma patients. Additionally, we report high sensitivity and superior specificity and positive predictive value for 68Ga-FAPI46 versus 18F-FDG.

3.
J Nucl Med ; 65(7): 1151-1159, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38782455

ABSTRACT

Radiomics features can reveal hidden patterns in a tumor but usually lack an underlying biologic rationale. In this work, we aimed to investigate whether there is a correlation between radiomics features extracted from [18F]FDG PET images and histologic expression patterns of a glycolytic marker, monocarboxylate transporter-4 (MCT4), in pancreatic cancer. Methods: A cohort of pancreatic ductal adenocarcinoma patients (n = 29) for whom both tumor cross sections and [18F]FDG PET/CT scans were available was used to develop an [18F]FDG PET radiomics signature. By using immunohistochemistry for MCT4, we computed density maps of MCT4 expression and extracted pathomics features. Cluster analysis identified 2 subgroups with distinct MCT4 expression patterns. From corresponding [18F]FDG PET scans, radiomics features that associate with the predefined MCT4 subgroups were identified. Results: Complex heat map visualization showed that the MCT4-high/heterogeneous subgroup was correlating with a higher MCT4 expression level and local variation. This pattern linked to a specific [18F]FDG PET signature, characterized by a higher SUVmean and SUVmax and second-order radiomics features, correlating with local variation. This MCT4-based [18F]FDG PET signature of 7 radiomics features demonstrated prognostic value in an independent cohort of pancreatic cancer patients (n = 71) and identified patients with worse survival. Conclusion: Our cross-modal pipeline allows the development of PET scan signatures based on immunohistochemical analysis of markers of a particular biologic feature, here demonstrated on pancreatic cancer using intratumoral MCT4 expression levels to select [18F]FDG PET radiomics features. This study demonstrated the potential of radiomics scores to noninvasively capture intratumoral marker heterogeneity and identify a subset of pancreatic ductal adenocarcinoma patients with a poor prognosis.


Subject(s)
Fluorodeoxyglucose F18 , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Female , Male , Middle Aged , Aged , Monocarboxylic Acid Transporters/metabolism , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Image Processing, Computer-Assisted , Positron Emission Tomography Computed Tomography , Muscle Proteins/metabolism , Radiopharmaceuticals , Positron-Emission Tomography , Radiomics
4.
Clin Epigenetics ; 16(1): 13, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38229153

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis. It is marked by extraordinary resistance to conventional therapies including chemotherapy and radiation, as well as to essentially all targeted therapies evaluated so far. More than 90% of PDAC cases harbor an activating KRAS mutation. As the most common KRAS variants in PDAC remain undruggable so far, it seemed promising to inhibit a downstream target in the MAPK pathway such as MEK1/2, but up to now preclinical and clinical evaluation of MEK inhibitors (MEKi) failed due to inherent and acquired resistance mechanisms. To gain insights into molecular changes during the formation of resistance to oncogenic MAPK pathway inhibition, we utilized short-term passaged primary tumor cells from ten PDACs of genetically engineered mice. We followed gain and loss of resistance upon MEKi exposure and withdrawal by longitudinal integrative analysis of whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and mass spectrometry data. RESULTS: We found that resistant cell populations under increasing MEKi treatment evolved by the expansion of a single clone but were not a direct consequence of known resistance-conferring mutations. Rather, resistant cells showed adaptive DNA hypermethylation of 209 and hypomethylation of 8 genomic sites, most of which overlap with regulatory elements known to be active in murine PDAC cells. Both DNA methylation changes and MEKi resistance were transient and reversible upon drug withdrawal. Furthermore, MEKi resistance could be reversed by DNA methyltransferase inhibition with remarkable sensitivity exclusively in the resistant cells. CONCLUSION: Overall, the concept of acquired therapy resistance as a result of the expansion of a single cell clone with epigenetic plasticity sheds light on genetic, epigenetic and phenotypic patterns during evolvement of treatment resistance in a tumor with high adaptive capabilities and provides potential for reversion through epigenetic targeting.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , DNA Methylation , Proto-Oncogene Proteins p21(ras)/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , DNA/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/therapeutic use , Cell Line, Tumor , Mutation
5.
Br J Haematol ; 202(5): 1033-1048, 2023 09.
Article in English | MEDLINE | ID: mdl-37423893

ABSTRACT

Growth factor independence 1 (GFI1) is a transcriptional repressor protein that plays an essential role in the differentiation of myeloid and lymphoid progenitors. We and other groups have shown that GFI1 has a dose-dependent role in the initiation, progression, and prognosis of acute myeloid leukaemia (AML) patients by inducing epigenetic changes. We now demonstrate a novel role for dose-dependent GFI1 expression in regulating metabolism in haematopoietic progenitor and leukaemic cells. Using in-vitro and ex-vivo murine models of MLL::AF9-induced human AML and extra-cellular flux assays, we now demonstrate that a lower GFI1 expression enhances oxidative phosphorylation rate via upregulation of the FOXO1- MYC axis. Our findings underscore the significance of therapeutic exploitation in GFI1-low-expressing leukaemia cells by targeting oxidative phosphorylation and glutamine metabolism.


Subject(s)
Leukemia, Myeloid, Acute , Transcription Factors , Humans , Mice , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Cell Differentiation , Prognosis , Epigenesis, Genetic , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
6.
Cells ; 12(10)2023 05 18.
Article in English | MEDLINE | ID: mdl-37408254

ABSTRACT

Fibroblast activation protein (FAP), expressed on cancer-associated fibroblasts, is a target for diagnosis and therapy in multiple tumour types. Strategies to systemically deplete FAP-expressing cells show efficacy; however, these induce toxicities, as FAP-expressing cells are found in normal tissues. FAP-targeted photodynamic therapy offers a solution, as it acts only locally and upon activation. Here, a FAP-binding minibody was conjugated to the chelator diethylenetriaminepentaacetic acid (DTPA) and the photosensitizer IRDye700DX (DTPA-700DX-MB). DTPA-700DX-MB showed efficient binding to FAP-overexpressing 3T3 murine fibroblasts (3T3-FAP) and induced the protein's dose-dependent cytotoxicity upon light exposure. Biodistribution of DTPA-700DX-MB in mice carrying either subcutaneous or orthotopic tumours of murine pancreatic ductal adenocarcinoma cells (PDAC299) showed maximal tumour uptake of 111In-labelled DTPA-700DX-MB at 24 h post injection. Co-injection with an excess DTPA-700DX-MB reduced uptake, and autoradiography correlated with FAP expression in the stromal tumour region. Finally, in vivo therapeutic efficacy was determined in two simultaneous subcutaneous PDAC299 tumours; only one was treated with 690 nm light. Upregulation of an apoptosis marker was only observed in the treated tumours. In conclusion, DTPA-700DX-MB binds to FAP-expressing cells and targets PDAC299 tumours in mice with good signal-to-background ratios. Furthermore, the induced apoptosis indicates the feasibility of targeted depletion of FAP-expressing cells with photodynamic therapy.


Subject(s)
Cancer-Associated Fibroblasts , Pancreatic Neoplasms , Photochemotherapy , Animals , Mice , Serine Endopeptidases/metabolism , Cancer-Associated Fibroblasts/metabolism , Tissue Distribution , Membrane Proteins/metabolism , Pancreatic Neoplasms/pathology , Fibroblasts/metabolism , Pentetic Acid/metabolism
7.
Mol Pharm ; 20(8): 4319-4330, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37485886

ABSTRACT

Patients with pancreatic ductal adenocarcinoma (PDAC) have a dismal 5 year survival of 9%. One important limiting factor for treatment efficacy is the dense tumor-supporting stroma. The cancer-associated fibroblasts in this stroma deposit excessive amounts of extracellular matrix components and anti-inflammatory mediators, which hampers the efficacy of chemo- and immunotherapies. Systemic depletion of all activated fibroblasts is, however, not feasible nor desirable and therefore a local approach should be pursued. Here, we provide a proof-of-principle of using fibroblast activation protein (FAP)-targeted photodynamic therapy (tPDT) to treat PDAC. FAP-targeting antibody 28H1 and irrelevant control antibody DP47GS were conjugated to the photosensitizer IRDye700DX (700DX) and the chelator diethylenetriaminepentaacetic acid. In vitro binding and cytotoxicity were evaluated using the fibroblast cell-line NIH-3T3 stably transfected with FAP. Biodistribution of 111In-labeled antibody-700DX constructs was determined in mice carrying syngeneic tumors of the murine PDAC cell line PDAC299, and in a genetically engineered PDAC mouse model (CKP). Then, tPDT was performed by exposing the subcutaneous or the spontaneous PDAC tumors to 690 nm light. Induction of apoptosis after treatment was assessed using automated analyses of immunohistochemistry for cleaved caspase-3. 28H1-700DX effectively bound to 3T3-FAP cells and induced cytotoxicity upon exposure to 690 nm light, whereas no binding or cytotoxic effects were observed for DP47GS-700DX. Although both 28H1-700DX and DP47GS-700DX accumulated in subcutaneous PDAC299 tumors, autoradiography demonstrated that only 28H1-700DX reached the tumor core. On the contrary, control antibody DP47GS-700DX was only present at the tumor rim. In CKP mice, both antibodies accumulated in the tumor, but tumor-to-blood ratios of 28H1-700DX were higher than that of the control. Notably, in vivo FAP-tPDT caused upregulation of cleaved caspase-3 staining in both subcutaneous and in spontaneous tumors. In conclusion, we have shown that tPDT is a feasible approach for local depletion of FAP-expressing stromal cells in murine models for PDAC.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Photochemotherapy , Mice , Animals , Serine Endopeptidases/metabolism , Caspase 3/metabolism , Tissue Distribution , Disease Models, Animal , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/pathology , Fibroblasts/metabolism , Antibodies/metabolism , Cell Line, Tumor , Pancreatic Neoplasms
8.
BMC Cancer ; 23(1): 484, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37254076

ABSTRACT

Altered cellular metabolism has long been recognized as a hallmark of cancer. Oncogenic signaling cascades induce metabolic rewiring that further supports tumorigenesis, therapy resistance and metastasis. In view of this, the Collection on 'Cancer Metabolism' highlights the current views and focus of research on personalized medicine approach to target metabolism for cancer therapy.


Subject(s)
Neoplasms , Humans , Neoplasms/pathology , Carcinogenesis , Energy Metabolism , Cell Transformation, Neoplastic , Precision Medicine
9.
J Nucl Med ; 64(7): 1049-1055, 2023 07.
Article in English | MEDLINE | ID: mdl-37024301

ABSTRACT

Management of cholangiocarcinoma is among other factors critically determined by accurate staging. Here, we aimed to assess the accuracy of PET/CT with the novel cancer fibroblast-directed 68Ga-fibroblast activation protein (FAP) inhibitor (FAPI)-46 tracer for cholangiocarcinoma staging and management guidance. Methods: Patients with cholangiocarcinoma from a prospective observational trial were analyzed. 68Ga-FAPI-46 PET/CT detection efficacy was compared with 18F-FDG PET/CT and conventional CT. SUVmax/tumor-to-background ratio (Wilcoxon test) and separately uptake for tumor grade and location (Mann-Whitney U test) were compared. Immunohistochemical FAP and glucose transporter 1 (GLUT1) expression of stromal and cancer cells was analyzed. The impact on therapy management was investigated by pre- and post-PET/CT questionnaires sent to the treating physicians. Results: In total, 10 patients (6 with intrahepatic cholangiocarcinoma and 4 with extrahepatic cholangiocarcinoma; 6 with grade 2 tumor and 4 with grade 3 tumor) underwent 68Ga-FAPI-46 PET/CT and conventional CT; 9 patients underwent additional 18F-FDG PET/CT. Immunohistochemical analysis was performed on the entire central tumor plain in 6 patients. Completed questionnaires were returned in 8 cases. Detection rates for 68Ga-FAPI-46 PET/CT, 18F-FDG PET/CT, and CT were 5, 5, and 5, respectively, for primary tumor; 11, 10, and 3, respectively, for lymph nodes; and 6, 4, and 2, respectively, for distant metastases. 68Ga-FAPI-46 versus 18F-FDG PET/CT SUVmax for primary tumor, lymph nodes, and distant metastases was 14.5 versus 5.2 (P = 0.043), 4.7 versus 6.7 (P = 0.05), and 9.5 versus 5.3 (P = 0.046), respectively, and tumor-to-background ratio (liver) was 12.1 versus 1.9 (P = 0.043) for primary tumor. Grade 3 tumors demonstrated a significantly higher 68Ga-FAPI-46 uptake than grade 2 tumors (SUVmax, 12.6 vs. 6.4; P = 0.009). Immunohistochemical FAP expression was high on tumor stroma (∼90% of cells positive), whereas GLUT1 expression was high on tumor cells (∼80% of cells positive). Overall, average expression intensity was estimated as grade 3 for FAP and grade 2 for GLUT1. Positive 68Ga-FAPI-46 PET findings led to a consequent biopsy workup and diagnosis of cholangiocarcinoma in 1 patient. However, patient treatment was not adjusted on the basis of 68Ga-FAPI-46 PET. Conclusion: 68Ga-FAPI-46 demonstrated superior radiotracer uptake, especially in grade 3 tumors, and lesion detection in patients with cholangiocarcinoma. In line with this result, immunohistochemistry demonstrated high FAP expression on tumor stroma. Accuracy is under investigation in an ongoing investigator-initiated trial.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Quinolines , Humans , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Gallium Radioisotopes , Glucose Transporter Type 1 , Cholangiocarcinoma/diagnostic imaging , Radiopharmaceuticals , Bile Duct Neoplasms/diagnostic imaging , Bile Ducts, Intrahepatic
10.
PET Clin ; 18(3): 409-418, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36990945

ABSTRACT

Fibroblast activation protein (FAP)-radioligand therapy might be effective in some patients without being curative. FAP-radioligands deliver ionizing radiation directly to FAP+ cancer-associated fibroblasts and, in some cancers, to FAP+ tumor cells; in addition, they indirectly irradiate FAP- cells in tumor tissue via cross-fire and bystander effects. Here, we discuss the potential to improve FAP-radioligand therapy through interfering with DNA damage repair, immunotherapy, and co-targeting cancer-associated fibroblasts. As the molecular and cellular effects of FAP-radioligands on the tumor and its microenvironment have not been investigated yet, we call for future research to close this gap in knowledge, which prevents the development of more effective FAP-radioligand therapies.


Subject(s)
Neoplasms , Serine Endopeptidases , Humans , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Precision Medicine , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasms/diagnostic imaging , Neoplasms/therapy , Fibroblasts/metabolism , Cell Line, Tumor , Tumor Microenvironment
11.
Nature ; 615(7950): 168-174, 2023 03.
Article in English | MEDLINE | ID: mdl-36813961

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is expected to be the second most deadly cancer by 2040, owing to the high incidence of metastatic disease and limited responses to treatment1,2. Less than half of all patients respond to the primary treatment for PDAC, chemotherapy3,4, and genetic alterations alone cannot explain this5. Diet is an environmental factor that can influence the response to therapies, but its role in PDAC is unclear. Here, using shotgun metagenomic sequencing and metabolomic screening, we show that the microbiota-derived tryptophan metabolite indole-3-acetic acid (3-IAA) is enriched in patients who respond to treatment. Faecal microbiota transplantation, short-term dietary manipulation of tryptophan and oral 3-IAA administration increase the efficacy of chemotherapy in humanized gnotobiotic mouse models of PDAC. Using a combination of loss- and gain-of-function experiments, we show that the efficacy of 3-IAA and chemotherapy is licensed by neutrophil-derived myeloperoxidase. Myeloperoxidase oxidizes 3-IAA, which in combination with chemotherapy induces a downregulation of the reactive oxygen species (ROS)-degrading enzymes glutathione peroxidase 3 and glutathione peroxidase 7. All of this results in the accumulation of ROS and the downregulation of autophagy in cancer cells, which compromises their metabolic fitness and, ultimately, their proliferation. In humans, we observed a significant correlation between the levels of 3-IAA and the efficacy of therapy in two independent PDAC cohorts. In summary, we identify a microbiota-derived metabolite that has clinical implications in the treatment of PDAC, and provide a motivation for considering nutritional interventions during the treatment of patients with cancer.


Subject(s)
Carcinoma, Pancreatic Ductal , Microbiota , Pancreatic Neoplasms , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/diet therapy , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/microbiology , Glutathione Peroxidase/metabolism , Pancreatic Neoplasms/diet therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/microbiology , Peroxidase/metabolism , Reactive Oxygen Species/metabolism , Tryptophan/metabolism , Tryptophan/pharmacology , Tryptophan/therapeutic use , Neutrophils/enzymology , Autophagy , Metagenome , Metabolomics , Fecal Microbiota Transplantation , Indoleacetic Acids/pharmacology , Indoleacetic Acids/therapeutic use , Disease Models, Animal , Germ-Free Life , Pancreatic Neoplasms
12.
Clin Cancer Res ; 29(6): 1137-1154, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36607777

ABSTRACT

PURPOSE: The identification of pancreatic ductal adenocarcinoma (PDAC) dysregulated genes may unveil novel molecular targets entering inhibitory strategies. Laminins are emerging as potential targets in PDAC given their role as diagnostic and prognostic markers. Here, we investigated the cellular, functional, and clinical relevance of LAMC2 and its regulated network, with the ultimate goal of identifying potential therapies. EXPERIMENTAL DESIGN: LAMC2 expression was analyzed in PDAC tissues, a panel of human and mouse cell lines, and a genetically engineered mouse model. Genetic perturbation in 2D, 3D, and in vivo allograft and xenograft models was done. Expression profiling of a LAMC2 network was performed by RNA-sequencing, and publicly available gene expression datasets from experimental and clinical studies examined to query its human relevance. Dual inhibition of pharmacologically targetable LAMC2-regulated effectors was investigated. RESULTS: LAMC2 was consistently upregulated in human and mouse experimental models as well as in human PDAC specimens, and associated with tumor grade and survival. LAMC2 inhibition impaired cell cycle, induced apoptosis, and sensitized PDAC to MEK1/2 inhibitors (MEK1/2i). A LAMC2-regulated network was featured in PDAC, including both classical and quasi-mesenchymal subtypes, and contained downstream effectors transcriptionally shared by the KRAS signaling pathway. LAMC2 regulated a functional FOSL1-AXL axis via AKT phosphorylation. Furthermore, genetic LAMC2 or pharmacological AXL inhibition elicited a synergistic antiproliferative effect in combination with MEK1/2is that was consistent across 2D and 3D human and mouse PDAC models, including primary patient-derived organoids. CONCLUSIONS: LAMC2 is a molecular target in PDAC that regulates a transcriptional network that unveils a dual drug combination for cancer treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Laminin/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Phosphorylation , Signal Transduction , Pancreatic Neoplasms
13.
Cancer Metab ; 10(1): 24, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494842

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) lacks effective treatment options beyond chemotherapy. Although molecular subtypes such as classical and QM (quasi-mesenchymal)/basal-like with transcriptome-based distinct signatures have been identified, deduced therapeutic strategies and targets remain elusive. Gene expression data show enrichment of glycolytic genes in the more aggressive and therapy-resistant QM subtype. However, whether the glycolytic transcripts are translated into functional glycolysis that could further be explored for metabolic targeting in QM subtype is still not known. METHODS: We used different patient-derived PDAC model systems (conventional and primary patient-derived cells, patient-derived xenografts (PDX), and patient samples) and performed transcriptional and functional metabolic analysis. These included RNAseq and Illumina HT12 bead array, in vitro Seahorse metabolic flux assays and metabolic drug targeting, and in vivo hyperpolarized [1-13C]pyruvate and [1-13C]lactate magnetic resonance spectroscopy (HP-MRS) in PDAC xenografts. RESULTS: We found that glycolytic metabolic dependencies are not unambiguously functionally exposed in all QM PDACs. Metabolic analysis demonstrated functional metabolic heterogeneity in patient-derived primary cells and less so in conventional cell lines independent of molecular subtype. Importantly, we observed that the glycolytic product lactate is actively imported into the PDAC cells and used in mitochondrial oxidation in both classical and QM PDAC cells, although more actively in the QM cell lines. By using HP-MRS, we were able to noninvasively identify highly glycolytic PDAC xenografts by detecting the last glycolytic enzymatic step and prominent intra-tumoral [1-13C]pyruvate and [1-13C]lactate interconversion in vivo. CONCLUSION: Our study adds functional metabolic phenotyping to transcriptome-based analysis and proposes a functional approach to identify highly glycolytic PDACs as candidates for antimetabolic therapeutic avenues.

14.
Eur J Nucl Med Mol Imaging ; 50(1): 115-129, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36074156

ABSTRACT

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a molecularly heterogeneous tumor entity with no clinically established imaging biomarkers. We hypothesize that tumor morphology and physiology, including vascularity and perfusion, show variations that can be detected by differences in contrast agent (CA) accumulation measured non-invasively. This work seeks to establish imaging biomarkers for tumor stratification and therapy response monitoring in PDAC, based on this hypothesis. METHODS AND MATERIALS: Regional CA accumulation in PDAC was correlated with tumor vascularization, stroma content, and tumor cellularity in murine and human subjects. Changes in CA distribution in response to gemcitabine (GEM) were monitored longitudinally with computed tomography (CT) Hounsfield Units ratio (HUr) of tumor to the aorta or with magnetic resonance imaging (MRI) ΔR1 area under the curve at 60 s tumor-to-muscle ratio (AUC60r). Tissue analyses were performed on co-registered samples, including endothelial cell proliferation and cisplatin tissue deposition as a surrogate of chemotherapy delivery. RESULTS: Tumor cell poor, stroma-rich regions exhibited high CA accumulation both in human (meanHUr 0.64 vs. 0.34, p < 0.001) and mouse PDAC (meanAUC60r 2.0 vs. 1.1, p < 0.001). Compared to the baseline, in vivo CA accumulation decreased specifically in response to GEM treatment in a subset of human (HUr -18%) and mouse (AUC60r -36%) tumors. Ex vivo analyses of mPDAC showed reduced cisplatin delivery (GEM: 0.92 ± 0.5 mg/g, vs. vehicle: 3.1 ± 1.5 mg/g, p = 0.004) and diminished endothelial cell proliferation (GEM: 22.3% vs. vehicle: 30.9%, p = 0.002) upon GEM administration. CONCLUSION: In PDAC, CA accumulation, which is related to tumor vascularization and perfusion, inversely correlates with tumor cellularity. The standard of care GEM treatment results in decreased CA accumulation, which impedes drug delivery. Further investigation is warranted into potentially detrimental effects of GEM in combinatorial therapy regimens.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Cisplatin/therapeutic use , Xenograft Model Antitumor Assays , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Neovascularization, Pathologic/diagnostic imaging , Neovascularization, Pathologic/drug therapy , Biomarkers , Tomography, X-Ray Computed , Magnetic Resonance Imaging , Tomography , Cell Line, Tumor , Gemcitabine , Pancreatic Neoplasms
15.
J Nucl Med ; 63(9): 1357-1363, 2022 09.
Article in English | MEDLINE | ID: mdl-34992151

ABSTRACT

The NETTER-1, VISION, and TheraP trials proved the efficacy of repeat intravenous application of small radioligands. Application by subcutaneous, intraperitoneal, or oral routes is an important alternative and may yield comparable or favorable organ and tumor radioligand uptake. Here, we assessed organ and tumor biodistribution for various radioligand application routes in healthy mice and models of cancer expressing somatostatin receptor (SSTR), prostate-specific membrane antigen (PSMA), and fibroblast activation protein (FAP). Methods: Healthy and tumor-bearing male C57BL/6 or NOD SCID γ-mice, respectively, were administered a mean of 6.0 ± 0.5 MBq of 68Ga-DOTATOC (RM1-SSTR allograft), 5.3 ± 0.3 MBq of 68Ga-PSMA11 (RM1-PSMA allograft), or 4.8 ± 0.2 MBq of 68Ga-FAPI46 (HT1080-FAP xenograft) by intravenous, intraperitoneal, subcutaneous, or oral routes. In vivo PET images and ex vivo biodistribution in tumor, organs, and the injection site were assessed up to 5 h after injection. Healthy mice were monitored for up to 7 d after the last scan for signs of stress or adverse reactions. Results: After intravenous, intraperitoneal, and subcutaneous radioligand administration, average residual activity at the injection site was less than 17 percentage injected activity per gram (%IA/g) at 1 h after injection, less than 10 %IA/g at 2 h after injection, and no more than 4 %IA/g at 4 h after injection for all radioligands. After oral administration, at least 50 %IA/g remained within the intestines until 4 h after injection. Biodistribution in organs of healthy mice was nearly equivalent after intravenous, intraperitoneal, and subcutaneous application at 1 h after injection and all subsequent time points (≤1 %IA/g for liver, blood, and bone marrow; 11.2 ± 1.4 %IA/g for kidneys). In models for SSTR-, PSMA- and FAP-expressing cancer, tumor uptake was increased or equivalent for intraperitoneal/subcutaneous versus intravenous injection at 5 h after injection (ex vivo): SSTR, 7.2 ± 1.0 %IA/g (P = 0.0197)/6.5 ± 1.3 %IA/g (P = 0.0827) versus 2.9 ± 0.3 %IA/g, respectively; PSMA, 3.4 ± 0.8 %IA/g (P = 0.9954)/3.9 ± 0.8 %IA/g (P = 0.8343) versus 3.3 ± 0.7% IA/g, respectively; FAP, 1.1 ± 0.1 %IA/g (P = 0.9805)/1.1 ± 0.1 %IA/g (P = 0.7446) versus 1.0 ± 0.2 %IA/g, respectively. Conclusion: In healthy mice, biodistribution of small theranostic ligands after intraperitoneal/subcutaneous application is nearly equivalent to that after intravenous injection. Subcutaneous administration resulted in the highest absolute SSTR tumor and tumor-to-organ uptake as compared with the intravenous route, warranting further clinical assessment.


Subject(s)
Prostatic Neoplasms , Receptors, Somatostatin , Animals , Cell Line, Tumor , Endopeptidases , Gallium Radioisotopes , Humans , Ligands , Male , Membrane Proteins , Mice , Mice, Inbred C57BL , Mice, SCID , Precision Medicine , Prostate-Specific Antigen , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/radiotherapy , Receptors, Somatostatin/metabolism , Tissue Distribution
16.
EJNMMI Res ; 11(1): 120, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34851463

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest malignancies to date. The impressively developed stroma that surrounds and modulates the behavior of cancer cells is one of the main factors regulating the PDAC growth, metastasis and therapy resistance. Here, we postulate that stromal and cancer cell compartments differentiate in protein/lipid glycosylation patterns and analyze differences in glycan fragments in those compartments with clinicopathologic correlates. RESULTS: We analyzed native glycan fragments in 109 human FFPE PDAC samples using high mass resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometric imaging (MALDI-FT-ICR-MSI). Our method allows detection of native glycan fragments without previous digestion with PNGase or any other biochemical reaction. With this method, 8 and 18 native glycans were identified as uniquely expressed in only stromal or only cancer cell compartment, respectively. Kaplan-Meier survival model identified glycan fragments that are expressed in cancer cell or stromal compartment and significantly associated with patient outcome. Among cancer cell region-specific glycans, 10 predicted better and 6 worse patient survival. In the stroma, 1 glycan predicted good and 4 poor patient survival. Using factor analysis as a dimension reduction method, we were able to group the identified glycans in 2 factors. Multivariate analysis revealed that these factors can be used as independent survival prognostic elements with regard to the established Union for International Cancer Control (UICC) classification both in tumor and stroma regions. CONCLUSION: Our method allows in situ detection of naturally occurring glycans in FFPE samples of human PDAC tissue and highlights the differences among glycans found in stromal and cancer cell compartment offering a basis for further exploration on the role of specific glycans in cancer-stroma communication.

17.
Cell Death Dis ; 12(10): 885, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584066

ABSTRACT

Glioblastoma is the most common malignant primary brain tumor. To date, clinically relevant biomarkers are restricted to isocitrate dehydrogenase (IDH) gene 1 or 2 mutations and O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Long non-coding RNAs (lncRNAs) have been shown to contribute to glioblastoma pathogenesis and could potentially serve as novel biomarkers. The clinical significance of HOXA Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1) was determined by analyzing HOTAIRM1 in multiple glioblastoma gene expression data sets for associations with prognosis, as well as, IDH mutation and MGMT promoter methylation status. Finally, the role of HOTAIRM1 in glioblastoma biology and radiotherapy resistance was characterized in vitro and in vivo. We identified HOTAIRM1 as a candidate lncRNA whose up-regulation is significantly associated with shorter survival of glioblastoma patients, independent from IDH mutation and MGMT promoter methylation. Glioblastoma cell line models uniformly showed reduced cell viability, decreased invasive growth and diminished colony formation capacity upon HOTAIRM1 down-regulation. Integrated proteogenomic analyses revealed impaired mitochondrial function and determination of reactive oxygen species (ROS) levels confirmed increased ROS levels upon HOTAIRM1 knock-down. HOTAIRM1 knock-down decreased expression of transglutaminase 2 (TGM2), a candidate protein implicated in mitochondrial function, and knock-down of TGM2 mimicked the phenotype of HOTAIRM1 down-regulation in glioblastoma cells. Moreover, HOTAIRM1 modulates radiosensitivity of glioblastoma cells both in vitro and in vivo. Our data support a role for HOTAIRM1 as a driver of biological aggressiveness, radioresistance and poor outcome in glioblastoma. Targeting HOTAIRM1 may be a promising new therapeutic approach.


Subject(s)
Glioblastoma/genetics , Glioblastoma/radiotherapy , MicroRNAs/metabolism , Radiation Tolerance/genetics , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Survival/genetics , Clone Cells , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Humans , Mice, Nude , MicroRNAs/genetics , Mitochondria/metabolism , Neoplasm Invasiveness , Phenotype , Prognosis , Protein Glutamine gamma Glutamyltransferase 2/metabolism , Proteogenomics , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism
18.
Nat Commun ; 12(1): 5505, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535668

ABSTRACT

Kinase inhibitors suppress the growth of oncogene driven cancer but also enforce the selection of treatment resistant cells that are thought to promote tumor relapse in patients. Here, we report transcriptomic and functional genomics analyses of cells and tumors within their microenvironment across different genotypes that persist during kinase inhibitor treatment. We uncover a conserved, MAPK/IRF1-mediated inflammatory response in tumors that undergo stemness- and senescence-associated reprogramming. In these tumor cells, activation of the innate immunity sensor RIG-I via its agonist IVT4, triggers an interferon and a pro-apoptotic response that synergize with concomitant kinase inhibition. In humanized lung cancer xenografts and a syngeneic Egfr-driven lung cancer model these effects translate into reduction of exhausted CD8+ T cells and robust tumor shrinkage. Overall, the mechanistic understanding of MAPK/IRF1-mediated intratumoral reprogramming may ultimately prolong the efficacy of targeted drugs in genetically defined cancer patients.


Subject(s)
DEAD Box Protein 58/metabolism , Immunity, Innate , Inflammation/pathology , MAP Kinase Signaling System , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Receptors, Immunologic/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Checkpoints/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cytokines/metabolism , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immune Evasion/drug effects , Immunity, Innate/drug effects , Interferon Regulatory Factor-1/metabolism , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred C57BL , Neoplasms/pathology , Oncogenes , Signal Transduction/drug effects
20.
Sci Rep ; 11(1): 1191, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441943

ABSTRACT

The in vivo assessment of tissue metabolism represents a novel strategy for the evaluation of oncologic disease. Hepatocellular carcinoma (HCC) is a high-prevalence, high-mortality tumor entity often discovered at a late stage. Recent evidence indicates that survival differences depend on metabolic alterations in tumor tissue, with particular focus on glucose metabolism and lactate production. Here, we present an in vivo imaging technique for metabolic tumor phenotyping in rat models of HCC. Endogenous HCC was induced in Wistar rats by oral diethyl-nitrosamine administration. Peak lactate-to-alanine signal ratios (L/A) were assessed with hyperpolarized magnetic resonance spectroscopic imaging (HPMRSI) after [1-13C]pyruvate injection. Cell lines were derived from a subset of primary tumors, re-implanted in nude rats, and assessed in vivo with dynamic hyperpolarized magnetic resonance spectroscopy (HPMRS) after [1-13C]pyruvate injection and kinetic modelling of pyruvate metabolism, taking into account systemic lactate production and recirculation. For ex vivo validation, enzyme activity and metabolite concentrations were spectroscopically quantified in cell and tumor tissue extracts. Mean peak L/A was higher in endogenous HCC compared to non-tumorous tissue. Dynamic HPMRS revealed higher pyruvate-to-lactate conversion rates (kpl) and lactate signal in subcutaneous tumors derived from high L/A tumor cells, consistent with ex vivo measurements of higher lactate dehydrogenase (LDH) levels in these cells. In conclusion, HPMRS and HPMRSI reveal distinct tumor phenotypes corresponding to differences in glycolytic metabolism in HCC tumor tissue.


Subject(s)
Carbon Isotopes/administration & dosage , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Pyruvic Acid/administration & dosage , Alanine/metabolism , Animals , Cell Line, Tumor , Glycolysis/physiology , L-Lactate Dehydrogenase/metabolism , Lactic Acid/metabolism , Male , Rats , Rats, Nude , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL