Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 13(3): 1459-1471, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35048937

ABSTRACT

Quercetin and methylquercetin are present in a variety of sulfate and glucuronide conjugates in the plasma of quercetin-fed rats and humans. Quercetin conjugates exhibit various physiological activities, depending on the type and position of conjugation. However, little is known regarding the type and position of isomers of quercetin conjugates in the plasma, their accumulation in the liver and kidneys, and their excretion via urine. Using authentic standards of quercetin conjugates and liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis, we identified and quantified various quercetin conjugates in blood plasma, urine, liver, and kidney tissues 1, 4, and 10 h after orally administering 33.1 µmol kg-1 quercetin glucosides to rats. The profiles of quercetin conjugates were largely different among plasma, urine, liver, and kidneys. Very limited heteroconjugates (7-O-glucuronide-4'-O-sulfate) of quercetin and methylquercetin dominated in the plasma, but these heteroconjugates were much less excreted via urine and did not largely accumulate in the liver and kidneys. Heteroconjugates constituting sulfates other than 4' position sulfate, 7-O-glucuronide-3'-O-sulfate, 4'-O-glucuronide-7-O-sulfate, and 3'-O-glucuronide-7-O-sulfate were major metabolites in urine, but were minimally detected in the plasma. We also found that mono-sulfate conjugates were abundant in the liver and renal tissues. These results suggest that excretion of quercetin conjugates, especially heteroconjugates, into urine is highly selective. The heteroconjugates with 4'-O-sulfate may be scarcely excreted via urine, and thus accumulate in the blood plasma. Further research is necessary to evaluate the physiological effects of heteroconjugates accumulated in the plasma.


Subject(s)
Antioxidants/pharmacokinetics , Quercetin/pharmacokinetics , Administration, Oral , Animals , Antioxidants/administration & dosage , Chromatography, Liquid , Male , Plasma/metabolism , Quercetin/administration & dosage , Quercetin/blood , Quercetin/urine , Rats , Rats, Wistar , Tandem Mass Spectrometry
2.
Int J Mol Sci ; 22(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205659

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone released from enteroendocrine L cells in response to meal ingestion. GLP-1 receptor agonists and GLP-1 enhancers have been clinically employed to treat diabetes owing to their glucose-dependent insulin-releasing activity. The release of GLP-1 is primarily stimulated by macronutrients such as glucose and fatty acids, which are nutritionally indispensable; however, excessive intake of sugar and fat is responsible for the development of obesity and diabetes. Therefore, GLP-1 releasing food factors, such as dietary peptides and non-nutrients, are deemed desirable for improving glucose tolerance. Human and animal studies have revealed that dietary proteins/peptides have a potent effect on stimulating GLP-1 secretion. Studies in enteroendocrine cell models have shown that dietary peptides, amino acids, and phytochemicals, such as quercetin, can directly stimulate GLP-1 secretion. In our animal experiments, these food factors improved glucose metabolism and increased GLP-1 secretion. Furthermore, some dietary peptides not only stimulated GLP-1 secretion but also reduced plasma peptidase activity, which is responsible for GLP-1 inactivation. Herein, we review the relationship between GLP-1 and food factors, especially dietary peptides and flavonoids. Accordingly, utilization of food factors with GLP-1-releasing/enhancing activity is a promising strategy for preventing and treating obesity and diabetes.


Subject(s)
Dietary Proteins/pharmacology , Enteroendocrine Cells/drug effects , Glucagon-Like Peptide 1/metabolism , Glucose Intolerance/diet therapy , Phytochemicals/pharmacology , Animals , Humans
3.
J Agric Food Chem ; 69(21): 5907-5916, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34008400

ABSTRACT

This study examined the effects of a combination of soybean fiber and α-glycosyl-isoquercitrin (AGIQ) on improving quercetin bioavailability and glucose metabolism in rats fed an obesogenic diet. For 9 weeks, rats were individually fed a control diet, a high-fat high-sucrose (H) diet, H with soybean fiber (HS), or with AGIQ (HQ), or with both (HSQ). Quercetin derivatives in plasma, feces, urine, and cecal content were quantified by high-performance liquid chromatography to assess the bioavailability of quercetin, and meal tolerance tests were performed to assess postprandial glycemia and glucagon-like peptide-1 (GLP-1) responses. The HSQ group had higher plasma quercetin levels than HQ. The postprandial glycemia was attenuated in the HSQ group when compared to the H group. The basal plasma GLP-1 concentrations positively correlated with plasma quercetin derivative concentrations. Hence, the combination of soybean fiber and AGIQ could be beneficial for reducing the risk of glucose intolerance, possibly involving enhanced quercetin bioavailability and GLP-1 secretion.


Subject(s)
Glucagon-Like Peptide 1 , Quercetin , Animals , Biological Availability , Blood Glucose , Diet, High-Fat/adverse effects , Homeostasis , Insulin , Quercetin/analogs & derivatives , Rats , Glycine max , Sucrose
4.
Eur J Nutr ; 59(4): 1389-1398, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31079173

ABSTRACT

PURPOSE: To investigate the effects of water-soluble dietary fibers (pectin, soybean fiber, and guar gum) on the bioavailability of quercetin glucoside mixture (Q3GM) comprising quercetin-3-O-glucoside (Q3G, 31.8%) and its glucose adducts. METHODS: Male Wistar/ST rats were fed test diet containing 0.7% Q3GM with or without 5% of each dietary fiber for 8 weeks. Total quercetin derivatives were evaluated with liquid chromatograph tandem mass spectrometry (LC-MS/MS) as total quercetin derivatives after enzymatic deconjugation in plasma, urine, and fecal samples on week 2, 4, 6 and 8. Quercetin glucuronides excreted in feces were also measured. RESULTS: Fiber feeding elevated cecal weight and reduced cecal pH, indicative of cecal fermentation promotion. Changes in plasma and urinary quercetin levels revealed three phases of quercetin metabolism, including cumulative, transient, and stable phases. On week 2, total quercetin derivatives were higher in plasma samples from three fiber-fed groups than those control groups; however, urinary excretion increased in fiber-fed groups on week 4. Soybean fiber upregulated plasma and urinary quercetin levels on week 6 and 8. Intestinal degradation of quercetin by bacteria, calculated from differences between aglycone ingestion and sum of urinary and fecal excretion, was suppressed after dietary fiber supplementation especially in pectin fiber, which may partly contribute to the increase in quercetin bioavailability. Fecal quercetin glucuronide excretion was high in soybean fiber-fed rats, suggestive of the reduction of ß-glucuronidase in colon. CONCLUSION: Water-soluble dietary fibers, especially soybean fiber, enhanced quercetin bioavailability after chronic feeding and may promote beneficial effects of quercetin on disease prevention.


Subject(s)
Diet/methods , Dietary Fiber/pharmacology , Glycine max/metabolism , Quercetin/metabolism , Animals , Biological Availability , Male , Rats , Rats, Wistar , Time
6.
J Agric Food Chem ; 67(15): 4240-4249, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30895786

ABSTRACT

Quercetin glycosides in the diet are absorbed and converted to glucuronides, sulfates, or mixed conjugates of glucuronide and sulfate in plasma. Physiological effects of quercetin conjugates (Q-conjugates) differ depending on the type and position of conjugation. We developed a comprehensive analysis of Q-conjugates, including mixed conjugates, by LC/MS/MS. The whole species of Q-conjugates in tail blood plasma was measured on days 1, 3, and 12 in rats fed a 0.24% quercetin glucoside-containing diet. Twenty-three Q-conjugate molecules were detected, and 16 Q-conjugates among these were quantified using standard compounds. The most abundant metabolite in the plasma was mixed conjugates, comprising isorhamnetin-7- O-glucuronide-4'- O-sulfate, followed by quercetin-7- O-glucuronide-4'- O-sulfate; together, they accounted for 86% of total Q-conjugates on day 12. The profile of quercetin conjugate species did not significantly change during 12 days. The total Q-conjugate molecules quantified by our method was comparable with the total Q-conjugates quantified using an enzymatic deconjugation method.


Subject(s)
Chromatography, Liquid/methods , Glucosides/blood , Glucuronides/blood , Quercetin/blood , Tandem Mass Spectrometry/methods , Animals , Glucosides/chemistry , Glucosides/metabolism , Glucuronides/chemistry , Male , Quercetin/chemistry , Quercetin/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...