Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Cytogenet Genome Res ; 158(2): 106-113, 2019.
Article in English | MEDLINE | ID: mdl-31203273

ABSTRACT

The karyotypes of the family Parodontidae consist of 2n = 54 chromosomes. The main chromosomal evolutionary changes of its species are attributed to chromosome rearrangements in repetitive DNA regions in their genomes. Physical mapping of the H1 and H4 histones was performed in 7 Parodontidae species to analyze the chromosome rearrangements involved in karyotype diversification in the group. In parallel, the observation of a partial sequence of an endogenous retrovirus (ERV) retrotransposon in the H1 histone sequence was evaluated to verify molecular co-option of the transposable elements (TEs) and to assess paralogous sequence dispersion in the karyotypes. Six of the studied species had an interstitial histone gene cluster in the short arm of the autosomal pair 13. Besides this interstitial cluster, in Apareiodon davisi, a probable further site was detected in the terminal region of the long arm in the same chromosome pair. The H1/H4 clusters in Parodon cf. pongoensis were located in the smallest chromosomes (pair 20). In addition, scattered H1 signals were observed on the chromosomes in all species. The H1 sequence showed an ERV in the open reading frame (ORF), and the scattered H1 signals on the chromosomes were attributed to the ERV's location. The H4 sequence had no similarity to the TEs and displayed no dispersed signals. Furthermore, the degeneration of the inner ERV in the H1 sequence (which overlapped a stretch of the H1 ORF) was discussed regarding the likelihood of molecular co-option of this retroelement in histone gene function in Parodontidae.


Subject(s)
Characiformes/genetics , Chromosome Mapping/veterinary , Histones/genetics , Animals , Characiformes/metabolism , Female , Fish Proteins/genetics , In Situ Hybridization, Fluorescence , Karyotyping , Male , Retroelements , Sequence Analysis, DNA/veterinary
2.
Neotrop. ichthyol ; 17(2): e190010, 2019. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1012708

ABSTRACT

The transposable elements (TE) have been widely applied as physical chromosome markers. However, in Loricariidae there are few physical mapping analyses of these elements. Considering the importance of transposable elements for chromosomal evolution and genome organization, this study conducted the physical chromosome mapping of retroelements (RTEs) Rex1, Rex3 and Rex6 in seven species of the genus Harttia and four species of the genus Hypostomus, aiming to better understand the organization and dynamics of genomes of Loricariidae species. The results showed an intense accumulation of RTEs Rex1, Rex3 and Rex6 and dispersed distribution in heterochromatic and euchromatic regions in the genomes of the species studied here. The presence of retroelements in some chromosomal regions suggests their participation in various chromosomal rearrangements. In addition, the intense accumulation of three retroelements in all species of Harttia and Hypostomus, especially in euchromatic regions, can indicate the participation of these elements in the diversification and evolution of these species through the molecular domestication by genomes of hosts, with these sequences being a co-option for new functions.(AU)


Os elementos transponíveis (TE) têm sido amplamente aplicados como marcadores cromossômicos. Contudo, em Loricariidae, há poucas análises de mapeamento físico destes elementos. Considerando a importância de elementos transponíveis para a evolução cromossômica e organização genômica, este trabalho realizou o mapeamento físico cromossômico dos retroelementos (RTEs) Rex1, Rex3 e Rex6 em sete espécies do gênero Harttia e em quatro espécies do gênero Hypostomus, com o intuito de melhor compreender a organização e dinâmica dos genomas das espécies de Loricariidae. Os resultados evidenciaram um intenso acúmulo dos RTEs Rex1, Rex3 e Rex6 e distribuição dispersa em regiões heterocromáticas e eucromáticas no genoma das espécies estudadas. A presença de retroelementos em algumas regiões cromossômicas sugere sua participação em vários rearranjos cromossômicos. Além disso, o intenso acúmulo dos três retroelementos em todas as espécies de Harttia e Hypostomus, especialmente em regiões eucromáticas, pode indicar a participação destes elementos na diversificação e evolução destas espécies através da domesticação molecular pelo genoma dos hospedeiros, com estas sequências sendo co-optadas paras novas funções.(AU)


Subject(s)
Animals , Catfishes/genetics , Genes, pX/genetics , In Situ Hybridization/veterinary
3.
Cytogenet Genome Res ; 154(2): 99-106, 2018.
Article in English | MEDLINE | ID: mdl-29635248

ABSTRACT

The occurrence of repetitive DNA in autosomes and B chromosomes of Bergiaria westermanni was examined using conventional and molecular cytogenetic techniques. This species exhibited 2n = 56 chromosomes, with intra- and interindividual variation in the number of heterochromatic B chromosomes (from 0 to 4). The 5S rDNA was localized in pairs 1 and 5, and histone probes (H1, H3, and H4) and U2 small nuclear RNA were syntenic with 5S rDNA in pair 5. Histone sequences were also located in chromosome pair 14. The (GATA)n sequence was dispersed throughout the autosomes and B chromosomes, with clusters (microsatellite accumulation) in some chromosome regions. The telomeric probe revealed no signs of chromosomal rearrangements in the genome of B. westermanni. The 45S rDNA sites were detected in the terminal region of pair 27; these sites corresponded to a GC-rich heterochromatin block. In addition, 3 of the 4 B chromosomes also contained 45S rDNA copies. Silver nitrate staining in interphase nuclei provided indirect evidence of the expression of these rRNA genes in B chromosomes, indicating the probable origin of these elements. This report shows plasticity in the chromosomal localization of repeat DNA in B. westermanni and features a discussion of genomic diversification.


Subject(s)
Catfishes/genetics , Chromosome Mapping/methods , DNA, Ribosomal/genetics , Animals , Evolution, Molecular , Female , Humans , Karyotype , Male , Repetitive Sequences, Nucleic Acid
4.
Cytogenet Genome Res ; 149(3): 191-200, 2016.
Article in English | MEDLINE | ID: mdl-27522524

ABSTRACT

Chromosomal characteristics of Hoplerythrinus unitaeniatus populations from 5 Brazilian river basins, namely Arinos (Amazonas basin), Araguaia, Paraguai, Alto Paraná, and São Francisco were analyzed by conventional Giemsa staining, C-banding, silver nitrate impregnation, and fluorescence in situ hybridization (FISH) with 18S and 5S rDNA and telomeric sequence (TTAGGG)n probes. The diploid chromosome number was 2n = 48 in representatives of the populations from Paraguai and Alto Paraná River basins and 2n = 52 for those from the Arinos and Araguaia River basins. The São Francisco population had individuals with 2n = 50 and 52 occurring in sympatry. C-banding showed heterochromatic blocks mainly located at interstitial and pericentromeric positions in most of the chromosomes. Silver nitrate impregnation demonstrated simple NORs for representatives from Arinos and Araguaia River populations and multiple NORs for specimens from Paraguai, Alto Paraná, and São Francisco River populations. FISH with 18S and 5S rDNA probes revealed many chromosomes carrying these cistrons, with up to 21 chromosomes bearing 18S rDNA sites (Alto Rio Paraná basin) and up to 12 chromosomes with 5S rDNA sites (Paraguai basin), besides the occurrence of colocalization in all populations. FISH with telomeric sequence (TTAGGG)n detected sites in the terminal portion of the chromosomes in all populations. These data reinforce the idea that H. unitaeniatus is a species complex. Evolutionary and biogeographical aspects of the group in the Neotropical region are discussed.


Subject(s)
Characiformes/genetics , Cytogenetic Analysis , Rivers , Animals , Azure Stains , Base Sequence , Brazil , Chromosome Banding , Chromosomes/genetics , DNA, Ribosomal/genetics , Evolution, Molecular , Female , In Situ Hybridization, Fluorescence , Karyotype , Male , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 5S/genetics , Telomere/genetics
5.
Cytogenet Genome Res ; 144(4): 325-32, 2014.
Article in English | MEDLINE | ID: mdl-25662193

ABSTRACT

The family Parodontidae presents a conserved diploid number of 54 chromosomes and different stages associated with ZW sex chromosome differentiation. For the great majority of species in this family it was proposed that the karyotypic diversification is mostly due to repetitive DNA mobility and accumulation. In this study, 2 repetitive probes, (GATA)n and (TTAGGG)n, were used to assess probable mechanisms of chromosome diversification, especially those related to molecular differentiation of the W chromosome. Results showed that the (GATA)n sequence is involved in the differentiation of the W chromosome female-specific region of Parodontidae and that it is accumulated in diverse autosomes. The (TTAGGG)n repeat is part of the vertebrate telomere, and the presence of interstitial telomeric sites may help to identify chromosome rearrangements. However, in Parodontidae, no interstitial telomeric sites were detected. This study shows plasticity in the amount of the (GATA)n repeat in Parodontidae that may be involved in chromatin modifications and transcriptional control of the W chromosome, and the role of repetitive DNAs in genomic diversification in this fish family is discussed.


Subject(s)
Characiformes/genetics , In Situ Hybridization, Fluorescence/methods , Repetitive Sequences, Nucleic Acid , Sex Chromosomes/physiology , Animals , Characiformes/classification , DNA/analysis , DNA Probes , Female , Genetic Variation , Karyotype
SELECTION OF CITATIONS
SEARCH DETAIL
...